
GRAPHREC

PROGRAMMER’S DOCUMENTATION

Version 1.0.0

Prepared by Petr Koupý <petr.koupy@gmail.com>

Last Updated on April 30, 2010

mailto:petr.koupy@gmail.com

GraphRec Programmer’s Documentation 2

Table of Contents

1. Compilation

1.1. Preparing Environment

1.2. Building Qt

1.3. Building FFmpeg

1.4. Building GraphRec

1.5. Compressing Executable

1.6. Redistributable Package

1.7. Licensing

2. Algorithms

2.1. Multirobot Validation

2.2. Fruchterman-Reingold Layouting

2.3. Kamada-Kawai Layouting

2.4. Producer-consumer Synchronization

3. Architecture

3.1. Global Overview

3.2. Graph Primitives

3.2.1. Entity Class

3.2.2. Node Class

3.2.3. Edge Class

3.3. Passing Common Data

3.4. Producing Servants

3.4.1. Parser Interface

3.4.2. Saver Interface

3.4.3. Validator Interface

3.4.4. Layouter Interface

3.4.5. Recorder Interface

3.4.5.1.ImageRecorder Interface

3.4.5.2.VideoRecorder Interface

3.5. GraphView Class

3.5.1. Error Dialog

3.5.2. Color Dialog

3.5.3. Layouting

3.5.4. Scene Actions

3.5.5. Animation

3.5.6. Setup Dialog

3.5.7. Capture Dialog

3.5.8. Rendering

3.5.9. Video Encoding

3.6. Main Window

3.6.1. Splitting

3.6.2. Open Dialog

3.6.3. Help Dialog

3.7. Persistent Settings

4. File Formats

4.1. Multirobot

4.1.1. Grammar

4.1.2. Description

4.1.3. Example

4.2. GraphRec

4.2.1. Description

4.2.2. Example

GraphRec Programmer’s Documentation 3

1 Compilation
GraphRec is dependent on Qt framework and FFmpeg video library, both of which are large enough

that it is not reasonable to include their source code into the redistributable package. Once those
prerequisites are prepared and configured, GraphRec can be built solely from files that are included
in the redistributable package. Since both Qt and FFmpeg are multiplatform projects, it should be

possible to perform the compilation on all major platforms. However, testing was done only on
Windows and Linux (specifically Windows XP, Windows Vista, Windows 7, Ubuntu 8.10, Ubuntu
9.04, Ubuntu 9.10). Steps in the following guide produce the statically linked build of GraphRec

compiled by GNU compilers. Compilation steps are configured to be compatible with processors
containing MMX and SSE extensions to the instruction set, which are present on the majority of
modern processors. More uncommon extensions (e.g. 3DNow!, SSE2) are disabled. Note that all
proposed paths can be changed, however they must not contain any spaces.

1.1 Preparing Environment

Windows

Download following packages from http://sourceforge.net/projects/mingw/files/:

binutils-2.19.1-mingw32-bin.tar.gz

mingwrt-3.15.2-mingw32-dll.tar.gz

mingwrt-3.15.2-mingw32-dev.tar.gz

mingw32-make-3.81-20080326-3.tar.gz

gcc-core-4.4.0-mingw32-bin.tar.gz

gcc-core-4.4.0-mingw32-dll.tar.gz

gcc-c++-4.4.0-mingw32-bin.tar.gz

gcc-c++-4.4.0-mingw32-dll.tar.gz

w32api-3.13-mingw32-dev.tar.gz

pthreads-w32-2.8.0-mingw32-dll.tar.gz

gmp-4.2.4-mingw32-dll.tar.gz

libiconv-1.13-mingw32-dll-2.tar.gz

mpfr-2.4.1-mingw32-dll.tar.gz

Unpack all downloaded packages into c:\mingw\ and confirm all overwrite warnings.

Linux

Make sure you have installed following packages and their dependencies from repositories:

binutils

binutils-static

make

gcc

libgcc

libc6

libc6-dev

libglib

libglib-dev

cpp

g++

libstdc++6

libstdc++6-dev

libfontconfig

libfontconfig-dev

libxrender

libxrender-dev

Note: Although the goal is to create statically linked executable, on Linux it is dangerous to
statically link against system libraries. Thus, the resulting executable will be linked statically

only against Qt and FFmpeg. Since libraries like libc6 or libstdc++6, both of which will be

linked dynamically, are not backwards compatible, it is advised to carry out the build process
with older versions of listed packages. On the other hand, mentioned libraries are forwards

http://sourceforge.net/projects/mingw/files/

GraphRec Programmer’s Documentation 4

compatible up until now. Therefore, the older the packages will be, the more systems will be
able to run the executable. However, there must be done a trade-off between the amount of
compatible systems and the efficiency of produced code, assuming the newer versions of

libraries remove bugs and improve performance.

1.2 Building Qt

Windows

Download qt-everywhere-opensource-src-4.6.2.zip from

http://get.qt.nokia.com/qt/source/.

Unpack the archive into c:\qt\.

Edit the file c:\qt\mkspecs\win32-g++\qmake.conf by inserting -static -static-libgcc to

the beginning of QMAKE_LFLAGS. Resulting line should be:

QMAKE_LFLAGS = -static -static-libgcc -enable-stdcall-fixup -Wl,-enable-auto-

import -Wl,-enable-runtime-pseudo-reloc

Execute the following batch script from within c:\qt\:

PATH = %PATH%;c:\mingw\bin\;c:\qt\bin\

configure.exe -nomake tools -nomake examples -nomake demos -nomake docs -

nomake translations -release -opensource -confirm-license -static -ltcg -fast

-no-exceptions -no-accessibility -stl -no-sql-mysql -no-sql-psql -no-sql-oci -

no-sql-odbc -no-sql-tds -no-sql-db2 -no-sql-sqlite -no-sql-sqlite2 -no-sql-

ibase -no-qt3support -no-opengl -no-openvg -qt-zlib -no-gif -qt-libpng -no-

libmng -no-libtiff -qt-libjpeg -no-dsp -no-vcproj -no-incredibuild-xge -

plugin-manifests -qmake -process -rtti -mmx -no-3dnow -sse -no-sse2 -no-

openssl -no-dbus -no-phonon -no-multimedia -no-audio-backend -no-webkit -no-

script -no-scripttools -no-declarative -no-style-plastique -no-style-

cleanlooks -no-style-motif -no-style-cde -no-native-gestures -no-iwmmxt -no-

crt -no-cetest -no-freetype -no-s60

qmake.exe projects.pro -o Makefile -spec win32-g++

mingw32-make.exe

Linux

Download qt-everywhere-opensource-src-4.6.2.tar.gz from

http://get.qt.nokia.com/qt/source/.

Unpack the archive into /tmp/qt/.

Execute the following shell script from within /tmp/qt/ with elevated privileges:

#!/bin/sh

./configure -nomake tools -nomake examples -nomake demos -nomake docs -nomake

translations -release -opensource -confirm-license -static -fast -no-

exceptions -no-accessibility -stl -no-sql-mysql -no-sql-psql -no-sql-oci -no-

sql-odbc -no-sql-tds -no-sql-db2 -no-sql-sqlite -no-sql-sqlite2 -no-sql-

sqlite_symbian -no-sql-ibase -no-qt3support -no-xmlpatterns -no-multimedia -

no-audio-backend -no-phonon -no-phonon-backend -no-webkit -no-javascript-jit -

no-script -no-scripttools -no-declarative -no-3dnow -no-sse2 -qt-zlib -no-gif

-no-libtiff -qt-libpng -no-libmng -qt-libjpeg -no-openssl -no-nis -no-cups -

no-iconv -no-dbus -no-gtkstyle -no-nas-sound -no-opengl -no-openvg -no-sm -

xshape -xsync -no-xinerama -no-xcursor -no-xfixes -no-xrandr -xrender -mitshm

-fontconfig -no-xinput -no-xkb –glib

make

make install

http://get.qt.nokia.com/qt/source/
http://get.qt.nokia.com/qt/source/

GraphRec Programmer’s Documentation 5

1.3 Building FFmpeg

Windows

Create following directories:

c:\msys\

c:\msys\bin\

c:\msys\mingw\

Download following packages from http://sourceforge.net/projects/mingw/files/:

binutils-2.19.1-mingw32-bin.tar.gz

mingwrt-3.15.2-mingw32-dll.tar.gz

mingwrt-3.15.2-mingw32-dev.tar.gz

gcc-core-3.4.5-20060117-1.tar.gz

gcc-g++-3.4.5-20060117-1.tar.gz

w32api-3.13-mingw32-dev.tar.gz

Unpack all downloaded packages into c:\msys\mingw\ and confirm all overwrite warnings.

Download coreutils-5.97-2-msys-1.0.11-bin.tar.lzma and coreutils-5.97-2-msys-

1.0.11-ext.tar.lzma from http://sourceforge.net/projects/mingw/files/.

Unpack the archives into c:\msys\bin\.

Download MSYS-1.0.11.exe from http://sourceforge.net/projects/mingw/files/.

Run the installer and set the installation path to c:\msys\. Installation will be automatically

finished the by post-installation batch script, where upon request the MinGW path must be set

to c:/msys/mingw (note forward slashes).

Download ffmpeg-0.5.tar.bz2 from http://ffmpeg.org/releases/.

Unpack the archive into c:\ffmpeg\.

Run the MSYS environment from the Start menu, change the directory to c:/ffmpeg/ (note

forward slashes) and execute the following bash script:

#!/bin/sh

./configure --enable-gpl --disable-ffmpeg --disable-ffplay --disable-ffserver

--enable-swscale --disable-vhook --disable-network --disable-ipv6 --disable-

mpegaudio-hp --enable-memalign-hack --disable-encoders --enable-encoder=flv --

enable-encoder=h263 --enable-encoder=h263p --enable-encoder=mpeg1video --

enable-encoder=mpeg2video --enable-encoder=mpeg4 --enable-encoder=rv10 --

disable-decoders --disable-muxers --enable-muxer=avi --enable-muxer=flv --

enable-muxer=h263 --enable-muxer=matroska --enable-muxer=mov --enable-

muxer=mp4 --enable-muxer=mpeg1system --enable-muxer=mpeg1vcd --enable-

muxer=mpeg1video --enable-muxer=mpeg2dvd --enable-muxer=mpeg2svcd --enable-

muxer=mpeg2video --enable-muxer=rm --enable-muxer=swf --enable-muxer=tgp --

disable-demuxers --disable-parsers --disable-bsfs --disable-protocol=pipe --

disable-devices --disable-filters --disable-altivec --disable-amd3dnow --

disable-amd3dnowext --disable-mmx2 --disable-ssse3 --disable-armv5te --

disable-armv6 --disable-armv6t2 --disable-armvfp --disable-iwmmxt --disable-

mmi --disable-neon --disable-vis --disable-debug

make

make install

Copy c:\msys\local\include to c:\qt\include.

http://sourceforge.net/projects/mingw/files/
http://sourceforge.net/projects/mingw/files/
http://sourceforge.net/projects/mingw/files/
http://ffmpeg.org/releases/

GraphRec Programmer’s Documentation 6

Copy c:\msys\local\lib to c:\qt\lib.

Linux

Download ffmpeg-0.5.tar.bz2 from http://ffmpeg.org/releases/.

Unpack the archive into /tmp/ffmpeg/.

Execute the following shell script from within /tmp/ffmpeg/ with elevated privileges:

#!/bin/sh

./configure --enable-gpl --disable-ffmpeg --disable-ffplay --disable-ffserver

--enable-swscale --disable-vhook --disable-network --disable-ipv6 --disable-

mpegaudio-hp --enable-memalign-hack --disable-encoders --enable-encoder=flv --

enable-encoder=h263 --enable-encoder=h263p --enable-encoder=mpeg1video --

enable-encoder=mpeg2video --enable-encoder=mpeg4 --enable-encoder=rv10 --

disable-decoders --disable-muxers --enable-muxer=avi --enable-muxer=flv --

enable-muxer=h263 --enable-muxer=matroska --enable-muxer=mov --enable-

muxer=mp4 --enable-muxer=mpeg1system --enable-muxer=mpeg1vcd --enable-

muxer=mpeg1video --enable-muxer=mpeg2dvd --enable-muxer=mpeg2svcd --enable-

muxer=mpeg2video --enable-muxer=rm --enable-muxer=swf --enable-muxer=tgp --

disable-demuxers --disable-parsers --disable-bsfs --disable-protocol=pipe --

disable-devices --disable-filters --disable-altivec --disable-amd3dnow --

disable-amd3dnowext --disable-mmx2 --disable-ssse3 --disable-armv5te --

disable-armv6 --disable-armv6t2 --disable-armvfp --disable-iwmmxt --disable-

mmi --disable-neon --disable-vis --disable-debug

make

make install

1.4 Building GraphRec

Windows

Download GraphRec-1.0.0-Win32.zip from http://koupy.net/download/.

Unpack the archive into c:\graphrec\.

Execute the following batch script from within c:\graphrec\src\:

PATH = %PATH%;c:\mingw\bin\;c:\qt\bin\

qmake.exe GraphRec.pro -spec win32-g++ -r CONFIG+=release CONFIG+=static

QTPLUGIN+=qjpeg DEFINES+=G_GRSTATIC

mingw32-make.exe

Resulting executable is c:\graphrec\src\release\GraphRec.exe.

Linux

Download GraphRec-1.0.0-X11.tgz from http://koupy.net/download/.

Unpack the archive into /temp/graphrec/.

Execute the following shell script from within /temp/graphrec/src/:

#!/bin/sh

PATH=/usr/local/Trolltech/Qt-4.6.2/bin:$PATH

export PATH

LD_LIBRARY_PATH=/usr/local/lib

export LD_LIBRARY_PATH

qmake GraphRec.pro -spec linux-g++ -r CONFIG+=release CONFIG+=static

http://ffmpeg.org/releases/

GraphRec Programmer’s Documentation 7

QTPLUGIN+=qjpeg DEFINES+=G_GRSTATIC

make

Resulting executable is /tmp/graphrec/src/GraphRec.

1.5 Compressing Executable

Windows

Download upx304w.zip from http://upx.sourceforge.net/download/.

Unpack the archive into c:\upx\.

Copy c:\graphrec\src\release\GraphRec.exe to c:\upx\.

Execute the following batch script from within c:\upx\:

upx.exe --best --lzma GraphRec.exe

Resulting executable is c:\upx\GraphRec.exe.

Linux

Download upx-3.04-i386_linux.tar.bz2 from http://upx.sourceforge.net/download/.

Unpack the archive into /tmp/upx/.

Copy /tmp/graphrec/src/GraphRec to /tmp/upx/.

Execute the following shell script from within /tmp/upx/:

upx --best --lzma GraphRec

Resulting executable is /tmp/upx/GraphRec.

1.6 Redistributable Package

Package structure:

 bin folder contains the main executable.

 src folder contains sources additional files (images, icons) that are needed for compilation.

 doc folder contains documentation files. GraphRec is looking for the entry point named

index.html.

 samples folder contains input data for testing purposes.

Both packages, for Windows and Linux, contain the application launcher in their top-level directory.

Launcher is simple batch/shell script that runs the main executable located in bin directory.

The installer is made by the third-party software called Install Jammer

(http://www.installjammer.com/). It is free, cross-platform install builder with high level of
configurability. It supports both self-unpacking installers and archives.

1.7 Licensing

Both Qt and FFmpeg are licensed under the dual license – either GNU GPL or GNU LGPL. GraphRec
uses FFmpeg swscale support for the highly optimized conversion between RGB and YUV images.

Since swscale support is GPL-only, GraphRec must be also licensed under GPL. This implies that
redistributable package of GraphRec must contain complete source code and full text of GNU GPL

http://www.installjammer.com/

GraphRec Programmer’s Documentation 8

license. GPL license also demands that each source code file begins with the license stub. By the
viral nature of GPL license, all changes and additions to GraphRec must be released under the
same or less restrictive license. Concerning the packed executable, UPX is also licensed under GPL.

However, as stated on the project website, UPX decompression stub inserted into the compressed
executable is not a subject to the GPL.

2 Algorithms
Purpose of this section is to explain some techniques and algorithms used in GraphRec. Description
is rather abstract in order to support notion over actual implementation.

2.1 Multirobot Validation

Reference: multirobotvalidator.cpp, pebblevalidator.cpp

GraphRec reads arbitrary number of entity moves from the input file. Each move is specified only
by its source node, destination node and time step at which occurs. There is no assumption about

how these moves interact with each other. Since some moves can be in conflict, they have to be
validated against definition of either Multirobot path planning or Pebble motion on graph:

1) All moves are sorted by the time step with quicksort algorithm.
2) Moves are split into groups that are characterized by the same time step. Each group is

then filtered. Moves that are discarded meet one of these criteria:
a) Source node is equal to destination node, which effectively results in a loop.

b) There is no edge between source and destination node.
c) Source node does not contain entity in the respective time step.
d) There is already different approved move that begins in the same source node as

assessed move.
e) There is already different approved move that ends in the same destination node as

assessed move.

f) There is already different approved node that begins in the destination node and
ends in the source node of assessed move (inverse move).

3) Second pass through each of filtered groups determines final valid moves. Moves that are
approved meet one of these criteria:

a) Source node contains entity and destination node is empty.
b) (only Multirobot path planning) Both source node and destination node contain

entity. Recursive search proves that destination node is freed by some other move

occurring in the same time step and that whole chain of such moves is terminated
by an empty node.

Note: For those, who find themselves studying source code or input file format in detail, it should
be stated that arrow displayed in each movement definition is not always indicating actual direction
of the movement. Because of this ambiguity, it is not clear, which node should be considered as a

source. This inconveniency is caused by file format that is shared between GraphRec and planning
software, which validation was written for. In order to resolve this issue, direction is determined by
the presence of entity. If entity is present in a node pointed by the arrow and the other node is
empty, and if movement is otherwise valid, it can occur even in the opposite direction than the one

suggested by arrow. This is perfectly unambiguous in the case of isolated moves (because inverse
movement would be otherwise considered as invalid). However, when it comes to chain moves,
which are allowed by Multirobot path planning, ambiguity is causing problems again. In the

situation where two mutually inverse chains with common first movement were recognized as
valid, it would be impossible to decide which one should be approved. Thus, current
implementation analyses only chains that correspond with arrow direction.

2.2 Fruchterman-Reingold Layouting

Reference: fruchtermanreingoldlayouter.cpp

Fruchterman-Reingold layouting algorithm is one of so-called force-directed layouting algorithms. It
is based on the idea that nodes are repulsive particles and edges are contracting springs.

Target distance between nodes is proportional to their adjacency. Algorithm is iterative gradually
providing better and better layout for all nodes at each cycle. Utilized force model is elastic, so

GraphRec Programmer’s Documentation 9

that user can directly interact with running algorithm. GraphRec uses custom modified version of
this algorithm. Pseudocode:

in 𝐺 𝑉,𝐸 {initial positions of nodes are random}

in 𝑑𝑖𝑠𝑝 {target displacement of nodes}

forever

{calculate new positions}

foreach 𝑣 = 𝑥,𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦 ∈ 𝑉 do

𝑣. 𝑎𝑐𝑐𝑥 ← 0 {accumulator for horizontal position change}

𝑣. 𝑎𝑐𝑐𝑦 ← 0 {accumulator for vertical position change}

{accumulate repulsive forces}

foreach 𝑢 = 𝑥,𝑦, 𝑎𝑐𝑐𝑥 ,𝑎𝑐𝑐𝑦 ∈ 𝑉 ∖ 𝑣 do

let 𝑑𝑥 ← 𝑣. 𝑥 − 𝑢. 𝑥
let 𝑑𝑦 ← 𝑣. 𝑦 − 𝑢. 𝑦

let 𝑑 ← 𝑑𝑥
2 + 𝑑𝑦

2

let 𝑓𝑟 ← 𝑑𝑖𝑠𝑝2 𝑑 {repulsive force multiplier}
𝑣. 𝑎𝑐𝑐𝑥 ← 𝑣. 𝑎𝑐𝑐𝑥 + 𝑑𝑥 ∙ 𝑓𝑟 𝑑

𝑣. 𝑎𝑐𝑐𝑦 ← 𝑣. 𝑎𝑐𝑐𝑦 + 𝑑𝑦 ∙ 𝑓𝑟 𝑑

{accumulate attractive forces}

foreach 𝑒 = 𝑚,𝑛 ∈ 𝐸𝑣 = 𝑒 ∈ 𝐸 | ∃𝑤 ∈ 𝑉: 𝑒 = 𝑣,𝑤 ∨ 𝑒 = 𝑤, 𝑣 do

 let 𝑑𝑥 ← 𝑒.𝑚. 𝑥 − 𝑒.𝑛. 𝑥
 let 𝑑𝑦 ← 𝑒.𝑚. 𝑦 − 𝑒.𝑛. 𝑦

 let 𝑑 ← 𝑑𝑥
2 + 𝑑𝑦

2

let 𝑓𝑎 ← 𝑑 𝑑𝑖𝑠𝑝 {attractive force multiplier}

𝑣. 𝑎𝑐𝑐𝑥 ← 𝑣. 𝑎𝑐𝑐𝑥 – 𝐸𝑣 ∙ 𝑑𝑥 ∙ 𝑓𝑎 𝑑

𝑣. 𝑎𝑐𝑐𝑦 ← 𝑣. 𝑎𝑐𝑐𝑦 – 𝐸𝑣 ∙ 𝑑𝑦 ∙ 𝑓𝑎 𝑑

{update positions}

let 𝑠𝑡𝑎𝑡𝑖𝑐 ← 0 {counter for nodes with insignificant change}

foreach 𝑣 = 𝑥,𝑦, 𝑎𝑐𝑐𝑥 , 𝑎𝑐𝑐𝑦 ∈ 𝑉 do

if 𝑣. 𝑎𝑐𝑐𝑥 < 𝜀 ∧ 𝑣.𝑎𝑐𝑐𝑦 < 𝜀 then

𝑠𝑡𝑎𝑡𝑖𝑐 ← 𝑠𝑡𝑎𝑡𝑖𝑐 + 1

else
𝑣. 𝑥 ← 𝑣. 𝑥 + 𝑣. 𝑎𝑐𝑐𝑥
𝑣. 𝑦 ← 𝑣. 𝑦 + 𝑣. 𝑎𝑐𝑐𝑦

if 𝑠𝑡𝑎𝑡𝑖𝑐 = 𝑉 then

break

Time complexity of single iteration is 𝑂 𝑉 2 + 𝐸 .Original algorithm is terminated by simulated

annealing method, which gradually weakens the forces and algorithm is thus focusing more and
more on cosmetic rather than radical changes. Unfortunately, simulated annealing is not suitable
for interactive layouting, because it is slower and less intuitive. Therefore, modified algorithm is

terminated simply by checking when all vertices are moved only insignificantly.

Other deviations from the original algorithm are rather minor. Modified algorithm emphasizes
dependency between attractive force and number of edges that are connected to the vertex. Since

attractive force is multiplied by the number of connected edges, poorly connected vertices on the
outer boundary of the graph are not so much attracted by adjacent nodes. This approach gives
better layout especially in the case of regular grid, where boundary nodes tend to be dragged to

the center of the graph. Another difference is that modified algorithm does not calculate some
squaring and root extraction – algorithm then behaves more dynamically while user is dragging
some node (graph follows dragged node better). It should be noted that these modifications were

made in the trial and error style.

2.3 Kamada-Kawai Layouting

Reference: kamadakawailayouter.cpp

Kamada-Kawai is also iterative force-directed layouting algorithm. Target distance between nodes

is proportional to the graph-theoretic distance (shortest path). Single iteration improves position
of only one node at a time. When calculating its position, all other nodes are considered as solid
anchors for springs hooked together in the current location of processed node. Springs are both

GraphRec Programmer’s Documentation 10

contractive/repulsive depending on their current stretch and their equilibrium, which is
proportional to the shortest path between the two nodes (thus, springs have different strengths).
Algorithm is non-elastic and thus not very interactive. Kamada-Kawai algorithm utilizes several

methods and principles from very different fields (differential calculus, linear algebra, graph theory,
material mechanics).

All-pairs shortest-paths problem can be solved in 𝑂 𝑉 3 by Floyd-Warshall algorithm:

in 𝐺(𝑉,𝐸)

let 𝐷 = 𝑑𝑖𝑗 ←

0, 𝑖 = 𝑗

1, 𝑣𝑖 ,𝑣𝑗 ∈ 𝑉, 𝑣𝑖 ,𝑣𝑗 ∈ 𝐸

∞,𝑣𝑖 ,𝑣𝑗 ∈ 𝑉, 𝑣𝑖 ,𝑣𝑗 ∉ 𝐸

for 𝑘 ← 1,… , 𝑉 do

for 𝑖 ← 1,… , 𝑉 do

for 𝑗 ← 1,… , 𝑉 do

𝑑𝑖𝑗 ← min 𝑑𝑖𝑗 ,𝑑𝑖𝑘 + 𝑑𝑘𝑗

Spring counteracts its elongation/contraction by the force 𝐹 𝑥 = 𝐾 𝑥 − 𝑥0 , which is linearly

proportional to its deflection 𝑥 from the equilibrium 𝑥0. Accumulated potential energy corresponds

to the integral of force:

𝐸 𝑥 = 𝐹 𝑥 𝑑𝑥 =
1

2
𝐾 𝑥 − 𝑥0

2

Factor 𝐾 is defined for nodes 𝑣𝑖 ,𝑣𝑗 ∈ 𝑉 as 𝑘𝑖𝑗 = 𝐾0 𝑑𝑖𝑗
2 , where 𝐾0 is arbitrary constant. Thus, spring is

more solid between closer nodes (because of shorter path). Similarly, equilibrium length of the
spring is defined as 𝑙𝑖𝑗 = 𝑑𝑖𝑠𝑝 ∙ 𝑑𝑖𝑗 , where 𝑑𝑖𝑠𝑝 is external parameter specifying target displacement

of nodes. Finally, considering set of nodes 𝑉 = 𝑛, where 𝑣𝑖 ∈ 𝑉 has Euclidian coordinates 𝑥𝑖 ,𝑦𝑖, the

potential energy of the whole system can be defined as sum of potential energies for all springs:

𝐸 𝑥1,… , 𝑥𝑛 ,𝑦1,… , 𝑦𝑛 =
1

2
𝑘𝑖𝑗 𝑥𝑖 − 𝑥𝑗

2
+ 𝑦𝑖 − 𝑦𝑗

2
− 𝑙𝑖𝑗

2𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

At each iteration, algorithm chooses node 𝑣𝑚 with the maximum size of the gradient vector ∇𝐸𝑚 ,

where 𝐸𝑚 𝑥𝑚 , 𝑦𝑚 is function 𝐸 whose variables (apart from 𝑥𝑚 ,𝑦𝑚) are considered as fixed

constants:

∇𝐸𝑚 =
𝜕𝐸

𝜕𝑥𝑚
,
𝜕𝐸

𝜕𝑦𝑚
 , ∇𝐸𝑚 =

𝜕𝐸

𝜕𝑥𝑚

2

+
𝜕𝐸

𝜕𝑦𝑚

2

𝜕𝐸

𝜕𝑥𝑚
= 𝑘𝑚𝑖 𝑥𝑚 − 𝑥𝑖 −

𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2

𝑛

𝑖=1

𝜕𝐸

𝜕𝑦𝑚
= 𝑘𝑚𝑖 𝑦𝑚 − 𝑦𝑖 −

𝑙𝑚𝑖 𝑦𝑚 − 𝑦𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2

𝑛

𝑖=1

Gradient vector is then gradually decreased by moving the node to the local minimum of 𝐸𝑚 .

Newton-Raphson numerical method approximates zero of the function 𝑓 𝑥 by iterating through the

equation 𝑥𝑛+1 = 𝑥𝑛 − 𝑓 𝑥𝑛 𝑓 ′ 𝑥𝑛 , which can be also expressed as 𝑓 ′ 𝑥𝑛 ∙ 𝑑𝑥 = −𝑓 𝑥𝑛 , where

𝑑𝑥 = 𝑥𝑛+1 − 𝑥𝑛 . Let us apply this method to approximate the zero of gradient vector ∇𝐸𝑚 ,

effectively finding the local minimum of 𝐸𝑚 . This includes calculating the Jacobian of ∇𝐸𝑚:

𝐽∇𝐸𝑚 ∙
𝑑𝑥

𝑑𝑦
 = −∇𝐸𝑚

GraphRec Programmer’s Documentation 11

𝜕2𝐸

𝜕𝑥𝑚
2

𝜕2𝐸

𝜕𝑥𝑚𝜕𝑦𝑚
𝜕2𝐸

𝜕𝑦𝑚𝜕𝑥𝑚

𝜕2𝐸

𝜕𝑦𝑚
2

∙
𝑑𝑥
𝑑𝑦
 =

 −

𝜕𝐸

𝜕𝑥𝑚

−
𝜕𝐸

𝜕𝑦𝑚

𝜕2𝐸

𝜕𝑥𝑚
2 = 𝑘𝑚𝑖 1 −

𝑙𝑚𝑖 𝑦𝑚 − 𝑦𝑖
2

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

𝜕2𝐸

𝜕𝑥𝑚𝜕𝑦𝑚
=

𝜕2𝐸

𝜕𝑦𝑚𝜕𝑥𝑚
= 𝑘𝑚𝑖

𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖 𝑦𝑚 − 𝑦𝑖

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

𝜕2𝐸

𝜕𝑦𝑚
2 = 𝑘𝑚𝑖 1 −

𝑙𝑚𝑖 𝑥𝑚 − 𝑥𝑖
2

 𝑥𝑚 − 𝑥𝑖
2 + 𝑦𝑚 − 𝑦𝑖

2 3
2

𝑛

𝑖=1

In order to solve above system of two linear equations, let us use Cramer’s rule:

𝑎 𝑏
𝑐 𝑑

 ∙
𝑥
𝑦 =

𝑒
𝑓

𝑥 =
𝑒𝑑 − 𝑏𝑓

𝑎𝑑 − 𝑏𝑐
,𝑦 =

𝑎𝑓 − 𝑒𝑐

𝑎𝑑 − 𝑏𝑐

Finally, the pseudocode for Kamada-Kawai can be written in the following way:

in 𝐺(𝑉,𝐸)

in 𝐷 = 𝑑𝑖𝑗 {shortest paths}

in 𝐿 = 𝑙𝑖𝑗 {equilibrium lengths}

in 𝐾 = 𝑘𝑖𝑗 {strength of springs}

while 𝑚𝑎𝑥𝑖=1
𝑛 ∇𝐸𝑖 > 𝜀 do

 let ∇𝐸𝑚 ← ∇𝐸𝑗 : ∇𝐸𝑗 = max𝑖=1
𝑛 ∇𝐸𝑖 , 𝑗 = 1,… ,𝑛

 let 𝑣 ← 𝑣𝑖 ∈ 𝑉: 𝑖 = 𝑚, 𝑖 = 1,… ,𝑛

 while ∇𝐸𝑚 > 𝜀 do

 {solve the system 𝐽∇𝐸𝑚 ∙ 𝑑𝑥
𝑑𝑦
 = −∇𝐸𝑚 }

 𝑣. 𝑥 ← 𝑣. 𝑥 + 𝑑𝑥
 𝑣. 𝑦 ← 𝑣. 𝑦 + 𝑑𝑦

Function 𝐸 is at its local minimum, when all of its first partial derivatives are equal to zero.

Algorithm approximates this target by gradually decreasing greatest ∇𝐸𝑖 gradient vectors, one at a

time, until all vectors have its elements (first partial derivatives) sufficiently close to zero. Partial

derivative can be computed in 𝑂 𝑉 . Outer loop calculates 𝑉 gradients, each consisting of 2

partial derivatives, in 𝑂 𝑉 2 . Inner loop calculates 4 derivatives for Jacobian and 2 derivatives in

order to update ∇𝐸𝑚 . Since count 𝑇 of inner loop iterations (Newton-Raphson method) depends un-

trivially on node count, node positions and graph structure, resulting cost of inner loop for one
outer loop iteration is 𝑂 𝑇 𝑉 . It should be noted that, when several conditions hold, Newton-

Raphson method is proved to converge quadratically to the zero of the given function. However,

convergence might fail when those condition are not met (e.g. the initial value is too far from
zero). Thus, GraphRec puts the upper limit on the number of inner loop executions to prevent lock-
ups, which effectively means that the overall cost of inner loop for one outer loop iteration is only

𝑂 𝑉 . Hence the complexity of single iteration of the outer loop is 𝑂 𝑉 2 . Note that the very first

iteration is 𝑂 𝑉 3 due to the Floyd-Warshall.

2.4 Producer-consumer Synchronization

Reference: main.cpp, graphview.cpp, ffmpegvideorecorder.cpp

GraphRec uses concurrency while encoding video. Rendering and encoding is done on different

threads. Thus, rendering function acts as a producer, who puts video frames into the buffer of
limited size, and encoding function acts as a consumer, who reads frames from the buffer and
encodes them into output file. Both threads are synchronized by two semaphores:

in 𝑏𝑢𝑓𝑓𝑒𝑟 {limited size}

in 𝑓𝑟𝑒𝑒 {semaphore guarding empty part of buffer}

GraphRec Programmer’s Documentation 12

in 𝑢𝑠𝑒𝑑 {semaphore guarding occupied part of buffer}

let 𝑓𝑟𝑒𝑒. 𝑐𝑜𝑢𝑛𝑡 ← 𝑏𝑢𝑓𝑓𝑒𝑟. 𝑠𝑖𝑧𝑒
let 𝑢𝑠𝑒𝑑. 𝑐𝑜𝑢𝑛𝑡 ← 0

procedure Producer
acquire 𝑓𝑟𝑒𝑒
{put data into buffer}
release 𝑢𝑠𝑒𝑑

procedure Consumer

acquire 𝑢𝑠𝑒𝑑
{read data from buffer}
release 𝑓𝑟𝑒𝑒

Function for acquiring semaphore normally blocks until resources are available. Since GraphRec

must stay responsive during video encoding, acquiring semaphore is periodically requested only for
small amount of time after which application message queue is inspected:

while tryacquire 𝑠𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒, 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 = 𝑓𝑎𝑙𝑠𝑒 do

{process application messages/events}
{read data from buffer}
release 𝑓𝑟𝑒𝑒

3 Architecture
Knowledge of architecture is critical for any modification or expansion of GraphRec source code.
First subsection briefly describes whole GraphRec in a top-down fashion. Overview should be read
before any other subsection, because these are ordered inversely (bottom-up) and thus not

providing any hindsight. In each subsection, it is assumed that reader knows information from
previous subsections. For those who are interested in making additional modules for validating,
layouting or file handling, it is sufficient to read only first three subsections. It is expected that

reader will be reviewing reference source code while going through subsections. Before reading any
architecture section, it is also recommended to read corresponding section in the User’s Guide.
Since it is not in the scope of this manual, it is assumed that reader understands specific aspects of

Qt programming – mainly signal/slot mechanism and GUI designing. It should be only noted here,
that signal/slot mechanism provides a way to construct more flexible architecture at the cost of
some performance (sending signal is approximately 10 times slower than normal function call). Qt
GUI designing is built around qmake, which takes XML document describing GUI and compiles it

into C++ code. XML description of GUI can be done manually or with help of QtDesigner.
Generated C++ class for GUI is then accessible by a special pointer.

3.1 Global Overview

On the top of the hierarchy, there is GraphRec class, which in fact represents the functionality and

behavior of the main window and its menu, tool bar and status bar. GraphRec also handles file

opening/saving and manages a collection of GraphView instances. Each GraphView stands for one

tab that contains a graph. Because GraphRec provide user controls, which are shared by all

GraphView instances, there must be a mechanism for sending user input to the correct GraphView

(the one which is foreground and focused). This is flexibly achieved by signal/slot mechanism,

which allows literally connecting/disconnecting respective GraphView to/from GraphRec. GraphView

class covers the rest of the application functionality – validation, layouting, animation and

capturing. GraphView also stores graph representation and is the owner of almost all dialogs (apart

from file handling dialogs that are owned by GraphRec). This implies that each GraphView has its

own set of dialogs and thus its own settings. However, configuration of single GraphView can be

saved to persistent storage (registry/file) and then it serves as a template for all new instances.

GraphRec Programmer’s Documentation 13

Since GraphView responsibility is very wide, it is distributed onto several other classes and dialogs.

In order to pass data among these classes, there is common data structure Context. It serves as a

container for several collections containing graph representation, movement calendar and some

settings. Idea is that all those classes alter one common Context, which is then displayed by

GraphView. Data collections in Context are assembled from classes that represent primitives –

Node, Edge and Entity. Graph itself is represented either by list of Node instances, each of which

contains list of connected Edge instances, or by list of Edge instances, each of which contains its

Node pair.

As was said earlier, GraphView utilizes other classes to achieve some tasks. These classes can be

split into two groups – dialogs and servants. Dialog usually exposes part of the Context to the user

(e.g. color editing) or provides interface for additional functionality (e.g. video capturing). All

dialogs are derived from QDialog class, thereby forming simple two-level hierarchy. Servants are

more complicated. Each servant provides specialized functions that can be called by its owner.

Servants form three-level hierarchy – first level is constituted of Servant interface, which is further

inherited by more specialized second-level interfaces (e.g. Layouter interface for graph layouting).

Third level is composed from actual implementations of second-level interfaces (e.g.

FruchtermanReingoldLayouter using specific algorithm for graph layouting). GraphRec,

GraphView and dialogs are programmed against servant interfaces located in the first and second

level. Implementations on the third level are identified by their name and evidenced in the Factory

class. When the owner wants to construct servant of some type (or even a name), its request is

passed to the Factory, which returns Servant pointer to the specified servant. Owner can specify

either type or servant name. Described mechanism brings modularity and extensibility into
GraphRec source code. Programmer who wants to implement additional servant (e.g. for layouting)

needs to know only primitives, Context and servant interfaces. Rest of the application is isolated

from him.

ImplementationInterfaces

Servant

Parser
MultirobotParser

GraphRecParser

Saver
MultirobotSaver

GraphRecSaver

Validator
MultirobotValidator

PebbleValidator

Layouter
FurchtermanReingoldLayouter

KamadaKawaiLayouter

Recorder

ImageRecorder
RasterImageRecorder

SVGImageRecorder

VideoRecorder FFmpegVideoRecorder

GraphView
GraphView

GraphView
GraphView

GraphView GraphRec

GraphRec Programmer’s Documentation 14

To provide better understanding of the data flow through application, example of basic user story is
described in the following paragraph. Let us say that user want to open, edit and save single

solution of Multirobot path planning. He/she invokes OpenDialog (owned by GraphRec) and loads

file into it. OpenDialog asks its MultirobotParser servant to find solutions in the file. After the

solution is selected and dialog confirmed, solution location is handed to GraphView, which in turn

creates its own MultirobotParser servant and asks it to initialize Context by collecting

information from provided file location. Immediately afterwards, Context is validated by

MultirobotValidator servant and finally displayed by GraphView. Initialized GraphView is

connected to GraphRec user interface and user can start to do some work. As an example, user

might decide to use automatic layouting. In that case, GraphView asks

FruchtermanReingoldLayouter servant to calculate node positions in the Context. User also

might not be satisfied with graph coloring. Therefore, he/she invokes ColorDialog, in which color

of any primitive in the Context can be changed. On the other hand, animation and rendering is

handled by GraphView itself. If user decides to save the solution, GraphRec creates

MultirobotSaver servant and provides it to respective GraphView, which in turn asks it to save

the Context.

3.2 Graph Primitives

Graph is represented by three primitives – Node, Edge and Entity – all of which are described in

following subsections. Whereas Entity is essentially only a data container, both Node and Edge

inherits QGraphicsItem and implements its paint event handler. Because paint handlers are called

quite frequently and QGraphicsItem might need some unrelated data to paint itself (e.g. Node

needs current time step to infer color), it is reasonable to maintain local copies of those data rather

than asking for them at each paint event. Propagation of such information is done via signal/slot

mechanism – thus, to continue example, when time step is changed in the GraphView, it is also

changed in all Node instances.

3.2.1 Entity Class
Reference: entity.h, entity.cpp

Entity is a simple class containing its identification (m_id), final time step (m_timestepFinal) and

color information. Final time step is the one after which Entity does not move anymore (stops

changing owners). Each Entity stores its normal (m_clBackground, m_clForeground) and final

(m_clBackgroundFinal, m_clForegroundFinal) color set. Node owning the Entity is colored by

final color set when and after the final time step is reached. Color set is a pair of colors that are

used by hosting Node for both background and label. Note that Entity itself is actually not visible

in the GraphView – it only provides information to the hosting Node.

3.2.2 Node Class
Reference: node.h, node.cpp

Node is a class inherited from QGraphicsItem. It contains its identification (m_id), reference to the

currently contained Entity (m_entity) and list of references to connected Edge instances

(m_edges). For purposes of animation, Node provides shallow copy constructor CloneShallow().

Shallow copy is not connected to the graph and is intended only as a temporary object used for

depicting movement of Entity between two Node instances. Since Node is one of the visual

elements rendered by GraphView, it must be able to paint itself accordingly to its inner state and

contained Entity:

 In case of null reference to Entity, Node is colored by its own color set (m_clBackground,

m_clForeground, m_clBoundary). Otherwise, it is colored by colors provided by hosted

Open Parse Validate Layout Color Animate Save

GraphRec Programmer’s Documentation 15

Entity. Node keeps track of current time step (m_timestep), which is compared at every

paint event with final time step discovered from the m_entity.

 Optionally, Node is able to display its identification or even identification of contained

Entity. Possible combinations are listed in NodeDescription enumeration and saved in

m_description variable.

 Node keeps track of its current position. In the case of discrete positioning

(m_discreteDisplacementEnabled), Node snaps itself to the closest allowed location

(m_discreteDisplacementOffset). This functionality is implemented in the event handler

itemChange() for positional changes and in the AlignPoint() function. Change of position

is reported to GraphView via NodePositionChanged() signal.

 At every position change, all Edge instances connected to the Node (m_edges) are

requested to update their positions as well (Edge::Adapt()).

 When selected or moved by the user, Z coordinate of Node is elevated over the rest of

graph elements displayed by GraphView. Z coordinate is returned to its original value after

the action is finished. Third level of Z-axis is reserved for normal Node instances, fourth

level for selected instances and finally fifth level is reserved for grabbed instance (the one
dragged by mouse). Note that all three levels are defined above the levels reserved for

Edge. Also note that there is automatic sub hierarchy between graphic elements that share

the same Z coordinate. Refer to mousePressEvent() and mouseReleaseEvent().

3.2.3 Edge Class
Reference: edge.h, edge.cpp

Likewise Node, Edge is another class inherited from QGraphicsItem and rendered by GraphView. It

contains references (m_nodeSource, m_nodeDestination) and positions (m_ptSource,

m_ptDestination) of its two connected Node instances. Positions are stored for efficiency, since it

is assumed that Edge paint event is called more frequently than node positions are changed. Edge

must be able to render itself in normal and highlighted mode (m_highlight), which is represented

by different color and increased thickness. Each time when the Entity, represented by shallow

copy of hosting Node (Node::CloneShallow()), is moving along the trajectory depicted by the

respective Edge, shallow copy of this Edge (Edge::CloneShallow()) is switched to highlighted

mode (m_highlight) and placed exactly under its prototype on the Z-axis. This approach ensures

that highlighting thick line will be always painted on the background not overlapping lines of non-

highlighted Edge instances. As was stated in Node description, shallow copy is intended only for

mentioned purpose. First level of Z-axis is reserved for highlighted Edge instances and second level

is reserved for normal Edge instances. Note that both levels are defined below the levels reserved

for Node.

3.3 Passing Common Data

Reference: context.h, context.cpp

Context is a class containing common data structures used by GraphView, dialogs and servants.

Each Context is owned by GraphView and passed by reference to other objects. Note that Context

can be extended by additional data entries. However, current data entries must remain the same,
because many classes depend on them. Description of data entries follows:

 Graph is identified by its filePosition in the file of name fileName located in filePath.

For convenience, fileName and filePath are joined in the fileCompleteName. Graph can

also have a title graphName, which is currently used as a placeholder for graph ID optionally

provided by input file. Both graphName and fileName are exposed to the user – graphName

as a tab label and fileName as a tab context help.

 Hashed map nodes maps node identifications to respective Node instances.

 Hashed map entities maps entity identifications to respective Entity instances

 Hashed map edges maps pairs of node identifications to respective Edge instances.

Intended for fast lookup of Edge instance when only identifications of its two nodes are

known.

 CalendarEvent is a structure consisting of timestep and move, which is expressed as a

pair of source node identification and destination node identification. CalendarEvent also

GraphRec Programmer’s Documentation 16

contains two flags – valid determines whether event was approved by validator and

reverse determines movement direction. Thus, if the direction suggested by input file is

evaluated as invalid, validator has an option to approve inverse direction instead (if it is

valid). All CalendarEvent structures are stored in an ordered list calendar. List is ordered

by timestep values. Since more than one CalendarEvent can have the same timestep

value and Context uses quicksort algorithm (unstable sorting), order between events with

the same time step is not defined.

 Hashed map timesteps maps each time step to the index of its first occurrence in ordered

calendar. Intended for fast lookup of events belonging to the same time step.

 Frame is hashed map that maps Node instances to Entity instances. It should be

interpreted as location definition for all Entity instances at one particular time step. All

Frame maps are stored in the list frames, which is indexed by time steps.

 Color of the GraphView scene is saved in sceneBackground.

 Information about currently viewed part of GraphView scene is saved in sceneMatrix and

sceneViewCenter. Whereas sceneMatrix stores transformation matrix for zooming,

sceneViewCenter stores point in the scene that is aligned to the center of visible area

(viewport). To provide backwards compatibility with alpha version of GraphRec, there is

also sceneAngle, which determines rotation of the scene. However, sceneAngle is now

obsolete, because rotation is applied on graph itself instead of the scene.

 String validatorName stores the name of the last validator that validated Context.

 Flag enabledColoring specifies whether input file has provided explicit coloring

information or not. If not, enabledColoring is true and serves as a hint that implicit colors

should be applied.

 Flag enabledLayouting specifies whether input file has provided explicit positional

information or not. If not, enabledLayouting is true and serves as a hint that layouting

should be applied automatically.

 Intended displacement of nodes is stored in layoutDisplacement variable. It serves as a

hint for layouters. Note that value is relative and each layouter can interpret it differently.

3.4 Producing Servants

Reference: servant.h, factory.h, factory.cpp

Servant is an abstract class, which is intended as a basic interface provided by its implementers.

Basic interface includes function Name() that returns servant name and function Description()

that returns its description. Whereas name serves as a unique identification of the servant,
description is intended for usage in the GUI (menu entries, status bar labels etc.). Each servant

must also provide static version of the name function, called GetName(), so that its name can be

discovered without instantiation. Both Name() and GetName() must return the same string.

Classes that implement Servant are catalogued in the Factory class. Servants are grouped

according to their types, which are listed in ServantType enumeration. Each type corresponds to

abstract class that inherits Servant and specifies some additional functions. These specialized

interfaces are described in following subsections. When some object needs a servant for some

purpose and knows its type and name, it calls CreateServant(), which is a Factory static function

returning the instance of requested servant. Factory also provides static function

GetServantNames() for discovering all available servants of one particular type.

3.4.1 Parser Interface

Reference: parser.h

Parser is an abstract class, which inherits Servant and imposes implementation of two functions:

 ParseFile() should search the file for graphs, count statistics for each found one and

insert those data into the table according to provided header. Table is composed from root

and its children, all of them TreeWidgetItem instances. Whereas root only holds file name

and file path (as a tool tip), each child stands for one line in the table. Idea is that, when
displaying more than one analyzed file to the user, each table can be folded into its root.

Collected information includes number of graph elements, solution length, preferred

GraphRec Programmer’s Documentation 17

servants and file location. Order of these items in the table row is specified by parameter

header, which is a list of entries from HeaderItem enumeration. Each HeaderItem entry in

the list serves as a hint on what information to put in what table column. Function returns

reference to the table root. TreeWidgetItem inherits QTreeWidgetItem, which serves as a

basic element for many of Qt data visualization widgets (lists, trees, grids). Only difference

between the two is that TreeWidgetItem implements differently its comparing function for

sorting – it has more universal behavior when comparing various combinations of text and

number values.

 ParseGraph() should search the file on the location specified in the context,

completely analyze graph on this location and insert all data into context. It is expected

that function builds nodes, entities, edges, calendar and fills graphName,

enabledColoring, enabledLayouting in the context. Optionally it can also fill

validatorName, sceneBackground, sceneMatrix and sceneViewCenter. Note that

calendar should be sorted before leaving the function. While parsing the file, it is possible

to emit some error messages through Error() signal.

Note that Name() function of the Parser must return string containing information about file suffix

in the following format: *.suffix (e.g. MyParser (*.txt)).

3.4.2 Saver Interface
Reference: saver.h

Saver is an abstract class, which inherits Servant and imposes implementation of three functions:

 Open() should open provided file and accomplish initialization of the saver. It is also

intended for writing file header etc.

 Save() should save provided context into output file. The structure and amount of data

that are going to be saved is entirely up to the Save() function.

 Close() should safely close output file (if needed). It is also intended for writing file footer

etc.

Note that Name() function of the Saver must return string containing information about file suffix in

the following format: *.suffix (e.g. MySaver (*.txt)).

3.4.3 Validator Interface
Reference: validator.h

Validator is an abstract class, which inherits Servant and imposes implementation of two

functions:

 Validate() is responsible for exploring calendar and building frames in the provided

context. It should set valid and reverse flags in every CalendarEvent. While going

through the calendar, function should progressively build Frame maps from valid

movements and insert these maps into frames in the context. Since frames is the main

structure needed for animation, Validate() is the most responsible function in a matter of

what exactly will be animated. While validating the calendar, it is possible to emit some

error messages through Error() signal. Function should also set a validatorName in the

context as a signature.

 GetColor() returns some color for every value specified in ColorScheme enumeration. Idea

behind this function is that all graphs validated by one particular Validator should be

visually distinguishable from the others. Note that this function serves only as a hint and

should be used only if input file did not specified any explicit coloring of graph elements.

Since Validator interface implements this function itself, its implementation is optional in

the implementer.

3.4.4 Layouter Interface
Reference: layouter.h

GraphRec Programmer’s Documentation 18

Layouter is an abstract class, which inherits Servant and imposes implementation of Layout()

function. It alters positions of Node instances contained in nodes map in the provided context.

Positions are set accordingly to implemented layout algorithm. Since some layout algorithms are
iterative, it is assumed that function will be repeatedly called by the owner, probably on timer or on
separate thread. Consequently, function must return boolean value specifying whether layout is
finished (true) or not (false). Non-iterative algorithm, which calculates layout in a single call,

should simply return true.

3.4.5 Recorder Interface

Reference: recorder.h

Recorder is an abstract class, which inherits Servant and imposes implementation of

GetSettingsWidget() function. It should prepare and return QWidget, which contains controls

connected to the custom slots in the implementer. Returned widget is presented to the user as a

part of CaptureDialog. When user edits any of these controls in the dialog, all changes are directly

sent to the Recorder implementer. This mechanism allows the implementer to have almost any

specific additional settings that are not covered by interface functions.

3.4.5.1 ImageRecorder Interface
Reference: imagerecorder.h

ImageRecorder is an abstract class, which inherits Recorder and imposes implementation of two

functions:

 GetPaintDevice() should prepare and return QPaintDevice into which the owner will

render visual data. Since some Qt classes derived from QPaintDevice need additional

information for their construction, function takes four arguments – path and name of the

target file (for devices that directly saves the data), height and width of the image (for

raster devices).

 SaveImage() should encode the provided device to the target file specified by path and

name. After the owner renders data to QPaintDevice obtained by GetPaintDevice(), it can

call SaveImage() passing device as an argument. Function is intended for devices, which

do not save the data directly to persistent storage.

Note: Both functions take target file name as an argument. This name is incomplete and serves
only as a template. Function should search the destination for the name conflicts and appropriately
edit provided file name to be unique (e.g. by adding number). Format suffix must be also

appended to the name.

3.4.5.2 VideoRecorder Interface

Reference: videorecorder.h

VideoRecorder is an abstract class, which inherits Recorder and imposes implementation of three

functions:

 GetFPS() returns the intended frame rate for the video stream.

 Start() function should initialize the encoder and then run a consumer thread, which will

encode QImage instances from the global buffer G_GRVideoBuffer of the size

G_GRVideoBufferSize. Function takes four arguments – path and name of the target file,

height and width of the video frame. The name is incomplete and serves only as a

template. Function should search the destination for the name conflicts and appropriately

edit provided file name to be unique (e.g. by adding number). Format suffix must be also

appended to the name. Access to the global buffer is guarded by two semaphores -

G_GRVideoFree and G_GRVideoUsed. All these global variables with G_GR prefix are

declared in the main.cpp file and can be accessed by only one producer and one consumer

at a time. Since GraphRec architecture allows the user to request more than one video
encoding at a time, there is a danger of having more than one concurrent consumer. It
would certainly lead to the corrupted video. Thus, before doing anything with those global

GraphRec Programmer’s Documentation 19

variables, Start() function have to check whether G_GRVideoOwner pointer is null and

does not point to some other VideoEncoder implementer. In the case that the pointer is

null, it should be initialized by self-reference of the implementer. This approach guarantees
exclusive access to the global variables. Note that the whole idea behind
producer/consumer synchronization and video encoding is described in other sections of
this manual.

 Stop() function should wait until G_GRVideoBuffer is emptied and should safely terminate

the consumer thread. After that, the output file should be ended (probably with some

footer or trailer) and closed. Before function returns, the G_GRVideoOwner pointer has to be

set to null value.

3.5 GraphView Class

Reference: graphview.h, graphview.cpp

GraphView class inherits QGraphicsView, which is a class for advanced two-dimensional graphics.

GraphView extends its ancestor by several custom-made functions and usage of additional dialogs,

controls and servants. Since GraphView is quite complex class, its description is divided into

several subsections. This introductory section will describe only GraphView construction and its

connections with other classes.

Usually, it is not very useful to describe class constructor in the documentation. However, in the

case of GraphView constructor, systematic description very well supports the overall idea over the

low-level application structure and data flow:

1) Arguments passed to the constructor consists of graph location (file, filePosition) and

servant names (parserName, validatorName, layouterName).

2) QGraphicsScene is created and initialized by calling inherited setScene() function. Scene

is the core part of every QGraphicsView. For more information about QGraphicsView,

QGraphicsScene and its coordinate system, please refer to the Qt documentation.

3) Context (further accessible through m_context) is created and information about graph

location (file, filePosition) is stored into it.

4) ErrorDialog (further accessible through m_dialogError) is created.

5) Parser corresponding to parserName is obtained from Factory and its Error() signal is

connected to Log() slot in the ErrorDialog.

6) Input file is parsed by Parser::ParseGraph() on specified filePosition, effectively

filling almost all information in the m_context.

7) Scene background, scene matrix and viewport central point are set according to

m_context.

8) Validator corresponding to validatorName is obtained from Factory and its Error()

signal is connected to Log() slot in the ErrorDialog.

9) Structures in the m_context are validated, which in fact constructs m_context->frames. If

the input file did not specified coloring, default colors of chosen Validator are injected into

graph elements in the m_context. Otherwise, coloring has been already done by parser.

10) All instances of QGraphicsItem from the m_context (that is Node and Edge instances) are

added into the scene.

11) Layouter corresponding to layouterName is obtained from Factory and saved into

m_layouter.

12) QTimer for layouting (further accessible through m_timerLayout) is created and connected

to on_timerLayout_timeout() handler.

13) If the input file did not specified positioning, layout is firstly randomized by

LayoutRandomize() and then properly calculated by m_layouter.

14) All nodes are connected to GraphView signals and slots, which are further utilized to

distribute several parameters into and from them during user actions and during

animation. Especially note the NodeMoved() slot, which notifies GraphView about layout

changes.

15) QTimeLine for animation (further accessible through m_animationTimeLine) is created and

connected to AnimateTimeStep() slot.

16) Signal AnimationStepDone() is connected to AnimateTimeStep() slot.

GraphRec Programmer’s Documentation 20

17) Additional visual controls are created - two QSlider instances (m_sliderTimeStep,

m_sliderDisplacement) and one QSpinBox instance (m_spinBoxTimeStep). Both controls

referring to time step are connected with each other to reflect the same information all the

time. All three controls are connected to GraphView slots (SetTimeStep() or

SetDisplacement()). Note also that their focus is forwarded to the GraphView (this is very

important, because user expects GraphView to connect to GraphRec by clicking anywhere

into its area).

18) Widgets created in the last step are placed onto GraphView providing quick actions to the

user.

19) ColorDialog (further accessible through m_dialogColor) is created.

20) Settings are fetched from persistent storage.

Following list classifies output connections (signals) from GraphView to other classes:

 GraphRec as an owner: HasFocus(), ValidatorNameChanged(), LayouterNameChanged(),

ValidatorDescriptionChanged(), LayouterDescriptionChanged(), Message(),

DiscreteDisplacementEnabled(), LayoutingEnabled(), NodeLabelsChanged(),

LayoutingInProgress(), AnimationInProgress(). Note that all these signals can be fired

at once by calling UpdateConnections().

 All Node instances: TimeStepChanged(), DiscreteDisplacementEnabled(),

DiscreteDisplacementOffsetChanged().

 Additional controls (m_sliderTimeStep, m_sliderDisplacement, m_spinBoxTimeStep,

m_sliderDuration): TimeStepChanged(), DisplacementChanged(), DurationChanged().

 GraphView itself: AnimationStepDone().

3.5.1 Error Dialog

Reference: errordialog.h, errordialog.cpp, errordialog.ui

ErrorDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui

pointer. Class provides public Log() slot, which can be used by other classes to post error

messages into QListWidget (m_ui->listWidgetErrorLog) in the ErrorDialog. Whenever user

selects some error message (QListWidgetItem), it is analyzed by regular expression

m_errorRegExp. If the expression matches, ErrorDialog emits ErrorSelected() signal, which is

connected to GraphView::SelectEvent() slot. Selected event is then tracked in the

GraphView::m_context. If the event exists, its time step is set and corresponding nodes are

highlighted. Whole log can be also saved into simple text file (on_buttonSave_clicked()).

ErrorDialog is non-modal and is constructed in the GraphView constructor and destroyed in its

destructor. During the lifetime of the owner, ErrorDialog can be only shown or hidden through

GraphView::m_dialogError.

3.5.2 Color Dialog
Reference: colordialog.h, colordialog.cpp, colordialog.ui

ColorDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui

pointer. GUI is represented by QTabWidget with three tabs, each containing one QTreeWidget.

Order of tabs is inferred from TabOrder enumeration. Header of the first tree widget is constructed

according to Node::NodeColorType enumeration. Similarly, header of the second tree widget

corresponds to Entity::EntityColorType enumeration. For the fast determination of both color

types, column numbers are mapped to them in the nodeColorTypes and entityColorTypes maps.

Whereas first and second tree widget is intended for listing nodes and entities (both obtained from

m_context argument passed to the constructor), third tree widget contains more general items –

namely m_itemBackground, m_itemBoundary and m_itemHighlight. Column order and their

captions can be easily changed in the constructor.

ColorDialog is designed to be non-modal, effectively allowing selection of nodes or entities

directly from GraphView. Whereas GraphView::keyPressEvent() on Ctrl key enables nodes

selection by mouse dragging, GraphView::keyReleaseEvent() on Ctrl key appends all selected

nodes to the list and passes it to the ColorDialog::SelectItems() function, which selects

GraphRec Programmer’s Documentation 21

corresponding items in the tree widget (either nodes or entities, depending on what tree widget is
currently active).

Color changes are done in a flexible but rather complicated way. Every time the tab is changed,

on_tabWidget_currentChanged() calls CreateMenu() function, which constructs customized menu

for current tree widget. Menu actions correspond to tree widget columns and are connected

through QSignalMapper to the SetColor() slot. Menu is then embedded into m_ui-

>buttonSetColor and serves also as a tree widget context menu displayed by ShowContextMenu()

function. Whenever user selects one or more items in the tree widget and hits some menu action,

SetColor() is called with column number obtained from the signal mapper. Color palette is then

showed (static function QColorDialog::getColor()) and after the user chooses appropriate color,

it is saved for all selected items into the m_context, each time inferring color type from

nodeColorTypes or entityColorTypes. Note that m_itemBoundary and m_itemHighlight must be

treated in a special way, since it affects more than one graph element in the m_context. Another

exception is m_itemBackground, which is connected to GraphView through

BackgroundColorChanged() signal.

ColorDialog is constructed in the GraphView constructor and destroyed in its destructor. During

the lifetime of the owner, ColorDialog can be only shown or hidden through

GraphView::m_dialogColor. Since it is not possible to change colors elsewhere, ColorDialog

contains actual color information for all graph elements at any time.

3.5.3 Layouting
Reference: graphview.h, graphview.cpp, node.cpp, layouter.h

Mechanism of automatic continuous layouting is based on the ticking of m_timerLayout and its

handler on_timerLayout_timeout(), which calls repeatedly m_layouter->Layout() until the false

value is returned informing that layout is finished. Automatic continuous layouting is enabled by

calling SetLayoutingEnabled(), which sets the m_context->enabledLayouting variable. By

calling SetDisplacement(), it is possible to change m_context->layoutDisplacement, which is

fetched by Layouter::Layout() from the m_context. Timer m_timerLayout can be controlled by

LayoutStart() and LayoutStop() functions. Note that m_timerLayout can be also launched

indirectly by moving any node while automatic layouting is enabled – it signals NodeMoved() slot,

which calls LayoutStart().

Discrete layouting is done differently. It can be enabled by calling

SetDiscreteDisplacementEnabled(), which sets the m_discreteDisplacementEnabled variable.

Function drawBackground() then repeatedly paints grid consisting of horizontal and vertical lines

on the background of the GraphView scene. Color of the lines is inversed RGB value of the

background color. Offset between lines in the grid can be set by calling

SetDiscreteDisplacementOffset(), which sets m_discreteDisplacementOffset. Both

m_discreteDisplacementEnabled and m_discreteDisplacementOffset are sent to all nodes via

DiscreteDisplacementEnabled() and DiscreteDisplacementOffsetChanged() signals whenever

changed. Every node then calls Node::AlignPoint() each time its position is altered

(Node::itemChange()), effectively snapping itself to the closest intersection of horizontal and

vertical line. All nodes can be snapped to the grid at once by calling LayoutDiscrete().

It should be noted that node positions are locked during animation by LayoutLock() function,

because it would otherwise lead to entities visually missing their destinations. When both

m_context->enabledLayouting and m_discreteDisplacementEnabled are disabled, nodes can be

freely moved by the user. When needed, layout can be randomized by LayoutRandomize()

function.

3.5.4 Scene Actions
Reference: graphview.h, graphview.cpp

All functions described in this section are usually called from keyPressEvent() handler. Graph can

be moved by calling ScrollGraph(), which in fact move every node from m_context by calling

GraphRec Programmer’s Documentation 22

Node::moveBy(). Graph moving is only possible when layouter is not working, because it might

destabilize its algorithm. Note that viewport scrolling, which is handled by QGraphicsView itself, is

still possible by mouse dragging even when layouting is in progress. Zooming is done by

ScaleView(). Provided scaling factor is first tried on the scene matrix in order to prevent very

large/small zoom, and then applied by calling scale() function inherited from QGraphicsView.

ScaleView() is usually called by whellEvent() handler, which calculates scaling factor from

mouse wheel rotation.

The most complicated action is rotation. Its implementation can be found in RotateGraph()

function. It should be noted that alpha version of GraphRec rotated the whole scene. Since this
approach lead to inconsistencies with other features, graph is currently rotated by changing

positions of its nodes instead. This also implies that Context::sceneAngle is no longer needed and

only kept for backwards compatibility with files created by alpha version (such files are now

transformed in the GraphView constructor to be compatible with new approach). Another limitation,

similarly to scrolling, is that graph can be rotated only when layouter is not working due to

destabilization of its algorithm. Discrete positioning is also ignored during rotation, because it is in
conflict with implemented rotation mechanism. Rotation itself is done in the following way. All

nodes are grouped into the QGraphicsItemGroup and current cursor position is determined by

QCursor::pos(). Then, QTransform is applied onto the group by virtually moving the whole group

to the cursor position, rotating it here by the given angle and moving it back to its original position.
This ensures that graph is rotated over the cursor position, which is more flexible than rotation

over viewport center or even graph center (which is expensive to calculate).

3.5.5 Animation

Reference: graphview.h, graphview.cpp

Usually, before the animation is started, user sets the initial time step for animation by calling

SetTimeStep(). It simply takes all nodes and updates their entities according to m_context-

>frames. In order to do that, GraphView stores information about current time position in

m_calendarPosition and m_timestep – both of which are kept synchronized with help of

m_context->timesteps. Whenever m_timestep variable is altered by some function, the function

also emits TimeStepChanged() in order to update time step in all nodes, so that nodes know

whether they are in the final position or not. From the hindsight, animation is a sequence of

AnimateTimeStep() calls. Every AnimateTimeStep() in the sequence either starts

m_animationTimeLine for visible animation or emits AnimationStepDone() for fast skip. Both

signals, m_animationTimeLine->finished() and AnimationStepDone(), are again connected to

AnimateTimeStep(), effectively acting as endless loop. Loop can be controlled by

AnimationStart() and AnimationStop() functions. AnimationStart() sets the

m_animationIsRunning flag, so that other functions can discover whether animation is in progress,

and calls AnimateTimeStep() to start the loop. AnimationStop() only sets

m_animationStopRequest flag, which is periodically checked by AnimateTimeStep(). There is also

function AnimationStep(), which is only simple subsequent call of AnimationStart() and

AnimationStop(). Considering animation, there are two layouting problems that deserve special

attention. First problem is that animation assumes static positions of graph elements – animated
movements are precalculated for every time step. Thus, layouting must be paused during
animation, because animated entities would otherwise miss their possibly moving destinations.
Second problem is that user can change layouting settings during animation. In order to react

correctly to these situations, AnimationStart() lock node positions (LayoutLock()) and sets pair

of flags - m_layoutingWasEnabled (automatic continuous layouting mode was enabled at the

moment) and m_layoutingWasRunning (layouter was still working at the moment).

AnimateTimeStep() itself is quite large function, which is composed from several logical parts

(recommended reading order is 3, 4, 1, 2):

1) Processing data structures from the last call. All shallow copies from the m_nodeBuffer are

removed from the scene and destroyed; their entities are inserted into corresponding

destination nodes (also discovered from m_nodeBuffer). Shallow copies from

m_edgeBuffer are also removed from the scene and destroyed. Finally, animations from

GraphRec Programmer’s Documentation 23

the m_animationBuffer are destroyed, leaving all three data structures empty for the next

round.

2) While deciding whether to stop animation loop, m_animationStopRequest is checked. If it

is true, m_animationIsRunning flag is reset and node positions are unlocked by

LayoutLock(). Note that there are two cases, in which the layouter should be immediately

launched. First case occurs when the layouter was running just right before the animation

and automatic layouting is still enabled now (means that the layout is unfinished). Second
case occurs when automatic layouting was not enabled before animation but is enabled

now. Both cases can be inferred from m_context->enabledLayouting,

m_layoutingWasEnabled and m_layoutingWasRunning flags.

3) Preparing data structures for the animation and the next call. Every valid CalendarEvent

structure with the same time step as m_timestep is fetched from m_context->calendar.

Shallow copy of the event source node is inserted into the scene and its

QGraphicsItemAnimation is created, connected to m_animationTimeLine and appended to

m_animationBuffer list. Each QGraphicsItemAnimation has defined its starting and

ending point, which correspond to the position of associated source and destination node.

Idea is that m_animationTimeLine acts as a director, who sets time in all connected

QGraphicsItemAnimation instances, which move their embedded QGraphicsItem along

the predefined pathway. Entity is removed from the source node immediately after the
shallow copy is created, effectively leaving the copy as the entity carrier. Both shallow copy

and destination node are always appended as a pair into the m_nodeBuffer. Note that

shallow copy is not connected to any of GraphView signals. Thus, it is safe to increment

m_timestep even while the entities are not yet in their destinations. Edge between the

event source node and destination node is also shallow copied and the copy is set to the

highlighted mode. All such edges are appended to m_edgeBuffer.

4) Depending whether just animating or capturing (m_recordingEnabled),

m_animationTimeLine->start() is called or AnimationStepDone() is emitted. Signal is

emitted also in the case of empty m_animationBuffer or zero duration of

m_animationLine (inferred from m_timeoutZero flag), because animation would be

invisible and only slowing down the process.

3.5.6 Setup Dialog
Reference: setupdialog.h, setupdialog.cpp, setupdialog.ui

SetupDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui

pointer. SetupDialog is implemented in a straightforward way providing get and set functions for

almost all of its control widgets. Dialog is utilized by GraphView::ShowSetupDialog() – firstly

inserting GraphView variables into SetupDialog controls, then executing it as a modal dialog and

finally fetching values back to GraphView variables. The only interesting thing about dialog

implementation is that change signals of its control widgets are connected to the ChangeTrigger()

slot, which emits Changed() signal that is connected to m_ui->buttonDefault enabler. Thus, if the

settings are changed and user hits the enabled button, they are saved as default global settings for

any subsequent GraphView constructor.

3.5.7 Capture Dialog

Reference: capturedialog.h, capturedialog.cpp, capturedialog.ui, graphview.h, graphview.cpp

CaptureDialog can be invoked from the main menu through two different actions, which are

connected to corresponding slots in the GraphView – Snapshot() or Sequence(). Both slots call

GraphView::ShowCaptureDialog() with corresponding CaptureDialog::Mode as a parameter.

ShowCaptureDialog() closes and destroys existing GraphView::m_dialogCapture and constructs

new one again with corresponding CaptureDialog::Mode. After the dialog is constructed, settings

are injected into it, its signals for accepting and rejecting are connected to

GraphView::CaptureDialogHandler() and finally, depending on the passed mode, it is invoked as

a modal (mSequence mode) or non-modal (mSnapshot mode) dialog.

CaptureDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui

pointer. Most of capture settings provided by dialog are implemented in a straightforward get/set

way. Interesting is only m_ui->comboBoxRecorder containing list of available recorders (discovered

GraphRec Programmer’s Documentation 24

from Factory). Every time some recorder is selected

(on_comboBoxRecorder_currentIndexChanged()), its instance is retrieved from Factory and

saved into m_recorder pointer. Since Recorder interface defines

Recorder::GetSettingsWidget() function, it is called and returned QWidget is saved into

m_widgetRecorder and embedded in the CaptureDialog window. Behavior of the CaptureDialog

depends on Mode passed to the constructor. First of all, some GUI controls are disabled in either

mode (in more detail described in the User’s Guide). More importantly, whereas mSnapshot mode

only allows listing of recorders that implement ImageRecorder, mSequence allows all available

recorders. Different is also dialog confirmation handler (on_buttonCapture_clicked()), which in

mSnapshot mode only emits signal and leaves dialog opened.

Back in GraphView, CaptureDialogHandler() is called as a reaction on CaptureDialog

confirmation. Depending on whether dialog was accepted or not, settings are then fetched from it

into GraphView private variables and selected recorder is saved to GraphView::m_recorder

pointer. Further solving of the task is leaved for either GraphView::SnapshotHandler() or

GraphView::SequenceHandler(), both of which are described in the next section.

3.5.8 Rendering
Reference: graphview.h, graphview.cpp, main.cp, imagerecorder.h, videorecorder.h

Rendering is covered by Render() function. For now, let us only say that function behaves

differently on what GraphView::RenderMode is stored in the m_renderMode variable – either

directly saving image to persistent storage (rmDirectSave mode) or inserting image into

G_GRVideoBuffer (rmBufferSave mode). Render() function might be invoked from four places in

the source code. These entry points represent four different approaches how rendering can be
handled:

1) SnapshotHandler() sets m_renderMode to rmDirectSave and simply calls Render(), which

renders and saves single image.

2) SequenceHandler() infers that m_recorder is ImageRecorder. Thus, m_renderMode is set

to rmDirectSave, because expected result is sequence of images. Scene is rendered at

every m_captureInterval between two corresponding time steps (when nothing is

moving), both of which are bounded by m_captureTimeStepBegin and

m_captureTimeStepEnd. SequenceHandler() further decides depending on

m_recordingInteractive variable:

a) Non-interactive image sequence capturing is handled directly by

SequenceHandler(). Time steps are cycled by SetTimeStep() in the loop, whose

each iteration calls Render() function. In order to improve performance and

responsiveness of the application, scene is not rendered, simple QProgressDialog

is shown (m_dialogProgress) instead and application message loop is emptied

during each iteration.

b) Interactive image sequence capturing is handled by AnimateTimeStep()

function. SequenceHandler() only sets initial time step, toggles

m_recordingEnabled flag and calls AnimationStart(). AnimateTimeStep() will be

normally preparing and animating time steps, each time checking for correct

combination of m_recordingEnabled and m_renderMode, which allows calling

Render().

3) SequenceHandler() infers that m_recorder is VideoRecorder. Thus, m_renderMode is set

to rmBufferSave, because expected result is video file. Firstly, frame rate is retrieved

from m_recorder by calling VideoRecorder::GetFPS() and saved into m_fps variable.

Then, m_recorder is started by calling VideoRecorder::Start(), which takes destination

(m_captureFilePath, m_captureFileName) and resolution (m_captureWidth,

m_captureHeight) as arguments. From now on, m_recorder acts as a consumer, who

progressively fetch visual data from G_GRVideoBuffer and saves it into the file. Producer

will be Render() function together with AnimateTimeStep(), which is immediately invoked

by calling AnimationStart(). Note that difference between interactive and non-interactive

capturing (m_recordingInteractive) is not so big in comparison with image sequences –

it is now handled by the same code in the AnimateTimeStep() and the only difference is

(in)visible scene and utilization of m_dialogProgress. Rendering in AnimateTimeStep() is

GraphRec Programmer’s Documentation 25

done efficiently – after checking correct combination of m_recordingEnabled and

m_renderMode, nodes are animated only at positions required by video frame rate. Thus,

instead of calling m_animationTimeLine->start(), position of every

QGraphicsItemAnimation from m_animationBuffer is explicitly set in the loop that

iterates as many times as there are frames that fit, according to m_fps, into

m_animationTimeLine->duration(). Note that position is still inferred from

m_animationTimeLine, because it might not be linearly dependent on time. Every loop

iteration calls Render() and empties application message loop due to responsiveness. After

the loop is finished, AnimationStepDone() signal is emitted. When all time steps are

captured, AnimationStop() function calls VideoRecorder::Stop() on m_recorder in order

to safely finish recording. This approach ensures that video is rendered as fast as possible

and the quality of output is not dependent on processor speed (e.g. dropped frames).
However, this also implies that, due to processor speed, interactive video capturing is not
real time – from the user’s point of view, it might be either extremely slow or extremely

fast, both of which are not ideal for interactivity.

Render() function can be described in three steps:

 Preparing QPainter:

o In rmDirectSave mode, painter is constructed from QPaintDevice, which is

retrieved from m_recorder by calling ImageRecorder::GetPaintDevice(). Note

that, apart from m_captureWidth and m_captureHeight, which are quite logic,

function takes also m_captureFilePath and m_captureFileName as arguments,

because some paint devices directly save data to persistent storage while rendering
(e.g. XML file in the case of SVG file format).

o In rmBufferSave mode, painter is constructed from QImage, which itself is

constructed according to m_captureWidth and m_captureHeight.

 Rendering image. Since viewport of GraphView might have different aspect ratio than the

one calculated from m_captureWidth and m_captureHeight, rectangle representing

exposed area of the scene must be appropriately extended. At first, rectangle is aligned to

the top left corner of the viewport and then either its width or height is increased to match
output ratio. This ensures that resulting image will certainly contain intended part of the
scene and will have correct aspect ratio. Finally, exposed area is rendered by the painter

into its embedded device.

 Saving QPaintDevice:

o In rmDirectSave mode, device is saved by passing it to

ImageRecorder::SaveImage(). Note that, this function might do nothing since

data might have been already saved by device itself.

o In rmBufferSave mode, device, which is in fact QImage, is saved into

G_GRVideoBuffer, which is guarded by two semaphores - G_GRVideoFree and

G_GRVideoUsed – in a manner of producer/consumer synchronization. Current

buffer position is stored in m_bufferPosition variable. Note that acquiring the

semaphore is regularly interrupted by emptying the application message loop due

to responsiveness.

3.5.9 Video Encoding

Reference: videorecorder.h, ffmpegvideorecorder.h, ffmpegvideorecorder.cpp

Video encoding is implemented in FFmpegVideoRecoder class, which inherits VideoRecorder

interface. Class embeds EncoderThread derived from QThread, which is intended as a consumer for

G_GRVideoBuffer. Moreover, class is heavily dependent on API functions of FFmpeg video library.

In order to manage and distribute data in a uniform way among these API functions and embedded

thread, class defines structure Data, which contains all required parameters and FFmpeg data

structures. Data structure, created in the FFmpegVideoRecoder constructor, is accessible through

m_data or EncoderThread::m_recdata pointer (both classes share the structure, but

FFmpegVideoRecoder is the owner responsible for deletion). Following description focuses on how

the encoding is handled in detail. In order to provide clear explanation, API calls are, in most

cases, not mentioned explicitly. It should be noted that due to the lack of proper FFmpeg

GraphRec Programmer’s Documentation 26

documentation, API calls are deduced from output-example.c provided in FFmpeg source code

package.

Let us assume that Data structure already contains some initialized entries, which have been set by

slots connected to widget provided to the CaptureDialog:

 Initialization of Data structure is further done by Start() function:

a) File suffix and video format are inferred from m_data->formatString. Both

m_data->format and m_data->context structures are initialized by FFmpeg API

calls. Since FFmpeg guesses format from given string, it is easy to add more video
formats if needed.

b) Structure m_data->stream is initialized by calling CreateStream() function, which

further calls API. Note that the CreateStream() also contains all codec settings,

some of which are hard coded.

c) By a series of API calls, OpenVideo() function opens codec, whose settings were

just set in CreateStream(). After that, encoding buffer is allocated (m_data-

>buffer, m_data->bufferSize). Finally, a pair of AVFrame structures is initialized

by AllocateFrame() function – whereas format of m_data->frameTemp must be

compatible with QImage (RGB), m_data->frameFinal is intended as a codec input

(where the most suitable format is YUV).

d) Output file is created and opened (Start() takes path and name as arguments).

Format header is written into the file by API call.

e) Encoding thread is invoked by calling m_thread->start(), which effectively starts

EncoderThread::run() on the different thread.

 Encoding of images from G_GRVideoBuffer is done by EncoderThread::run() function

running on worker thread:

a) First of all, relevant data are copied from EncoderThread::m_recdata into local

variables of EncoderThread::run() function. Thus, data (mainly pointers to

FFmpeg structures) are now located on the local stack and one level of indirection
is avoided. Note that this is not intended as a protection against race conditions –

FFmpeg structures are still accessible from both threads since only pointers are

copied. Moreover, copying is not guarded by any mutex. None of this is problem,
because worker thread has exclusive access assuming current architecture (main
thread only prepares those structures before starting worker thread – there is no

concurrency between them concerning mentioned data).

b) Function enters the infinite loop, which is encoding images from G_GRVideoBuffer,

until the buffer is empty and EncoderThread::m_terminate flag is toggled. Since

anything done in the loop has direct impact on encoding speed, it must be

implemented efficiently. Every QImage (RGB) is at first copied from

G_GRVideoBuffer into the local frameTemp (RGB). Note that copying is the only

thing guarded by semaphores. Thus main thread, as a producer, is not slowed
down by waiting on actual frame encoding.

c) Visual data in the frameTemp are converted from RGB to YUV format and saved into

frameFinal. Highly optimized algorithm for this conversion is implemented in the

swscale() function provided by GPL version of FFmpeg (as of 2009, LGPL version

of swscale() is planned).

d) Image stored in frameFinal is encoded by chosen codec and saved into output file

(both actions done by API calls). Note that encoding function utilizes buffer,

whose bufferSize is set to 8MB by default (might be changed by user through

GUI). If the buffer is too small, recording immediately fails or video will be

corrupted.

 Deinitialization and memory freeing is done by Stop() function:

a) EncoderThread::SafelyTerminate() is called, which effectively terminates worker

thread by setting its m_terminate flag.

b) Format trailer is written into the output file by API call.

c) CloseVideo() and DestroyStream() deletes all allocated FFmpeg structures.

d) Output file is closed.

GraphRec Programmer’s Documentation 27

3.6 Main Window

Reference: graphrec.h, graphrec.cpp, graphrec.ui, graphview.h, opendialog.h

GraphRec is a class, which inherits QMainWindow and has its GUI part accessible through m_ui

pointer. Class represents the main application window consisting of menu bar (m_ui->menuBar),

tool bar (m_ui->toolBar), status bar (m_ui->statusBar) and laid out central widget (m_ui-

>centralWidget or m_ui->gridLayout). Menu bar is composed of several submenus and actions

(QAction). Menu structure and a brief description of actions can be found in User’s Guide. Tool bar

provides a subset of frequently used menu actions. Note that tool bar is designed by programmer

and cannot be edited by the user at runtime. During runtime, it is only possible to turn the tool bar
on/off or dock it to various sides of the window. Status bar contains two labels – one for displaying

application status (m_labelStatus) and the other for displaying validator name

(m_labelValidator). Status bar also allows posting some temporary messages over the labels.

Initially, the central widget is empty and almost all parts of the window and menu are disabled.

When user clicks on the File – Open button, function on_actionOpen_triggered() is called. At

first, it invokes OpenDialog, which is described in its own subsection. However, when the dialog is

confirmed by the user, function searches its acceptedSolutions (list of

OpenDialog::SolutionInfo structures) and process them one after the other. Each SolutionInfo

provides file name, file location and names of preferred parser, validator and layouter. Function

opens the file and creates new GraphView by providing it opened file and information from

SolutionInfo. Created GraphView is then added as a tab into either existing or newly constructed

QTabWidget (depending on whether there is already one). Newly constructed QTabWidget is

appended into m_tabWidgets list and embedded into central widget of the window. Function

ResetControls() is then called in order to enable/disable menu actions. When user closes the tab

(TabCloseRequested()), its GraphView is destroyed and tab is removed from its tab widget. If the

tab widget has no more tabs it is also destroyed and removed from both m_tabWidgets and central

widget. Function ResetControls() is called again.

Previous paragraph hints that each tab widget can contain more than one GraphView instance.

However, it is even more complicated, because tab widget can be split into more tab widgets.
Splitting tab widgets is described in its own subsection. Anyway, since majority of menu actions are

only handles, which further calls functions in GraphView, it is clear that there must be some

mechanism for delivering these calls to the right GraphView instance. Note that this mechanism

must deliver calls also in the opposite direction (from GraphView to GraphRec) in order to update

labels and some menu selections. Whole problem is resolved by usage of signal/slot mechanism.

Many of GraphRec actions or signals are connected to GraphView slots and vice versa. Every time

the GraphView is changed (it can be done by either tab change or focus change),

FocusedGraphViewChanged() is called. Function disconnects GraphRec from m_currentGraphView

and then reconnects it to the GraphView provided in an argument who. After reconnection is done,

connected GraphView is requested to emit its status by calling its function UpdateConnections().

In order to make all this working, every GraphView has its HasFocus() signal connected to the

GraphRec immediately after the construction.

GraphRec class is also partially responsible for file saving. When user clicks on File – Save or File –

Save All button, function on_actionSave_triggered() or on_actionSaveAll_triggered() is

called. Both functions invoke QFileDialog filling its file format combo box with names of Saver

servants obtained from Factory. After the user chooses path, name and suffix, file is opened and

corresponding saver is built. At first, saver is initialized by Saver::Open(). Then, it is then passed

to the SaveContext() function of the currently connected GraphView (or to every GraphView in the

case of Save All action). In the end, file is terminated by Saver::Close() and closed.

3.6.1 Splitting
Reference: graphrec.cpp

Central area of main window is represented by m_ui->centralWidget with m_ui->gridLayout

applied on it. In a basic case, there is only one instance of QTabWidget, whose parent is just

mentioned m_ui->gridLayout. Let us say that the tab widget contains more than one tab (each

GraphRec Programmer’s Documentation 28

tab containing instance of GraphView) and currently selected tab is not the first one (left most).

Then, it is possible to split this tab widget by Split() function into two tab widgets – first

containing tabs up to (not including) the selected tab, second containing the rest. Original tab

widget is then replaced by instance of QSplitter (supports movable boundary between its

children) into which those two new instances of QTabWidget are added. Described process can be

repeated on the arbitrary level of the hierarchy represented by binary tree, whose inner vertices

are instances of QSplitter and leafs are instances of QTabWidget. Tab widget to be split is inferred

from parent pointer of currently focused tab (m_currentGraphView). Every split can be done either

horizontally or vertically.

There is also inverse operation to the splitting. Unsplit() function takes QSplitter as an

argument and, by recursively calling itself on the splitter’s children, returns QTabWidget containing

all tabs from accessible leafs. If user unsplits a tab widget by calling

on_actionUnsplit_triggered(), its parent QSplitter is passed to Unsplit() function,

effectively merging focused tab widget with its unambiguous neighbour branch (vertical or
horizontal). Resulting tab widget is put on the place where destroyed parent splitter originally was.
As for tab closing, if the tab is closed and there are no more tabs in the tab widget, it is destroyed

and its parent splitter is replaced by the sibling (either QSplitter or QTabWidget). Note that both

Split() and Unsplit() are maintaining current set of tab widgets in m_tabWidgets list.

In the situation, when there is more than one tab visible to the user, it is possible to run animation

on all of them at once. As was explained in the animation description, every animation is

independently timed by its own QTimeLine, which behaves similarly to QTimer. Since timers are

not precise on the non-realtime operating system, it is difficult to synchronize more of them
running in parallel. This implies that two parallel animations with the same duration might get
desynchronized after a few time steps. To prevent this from happening, user can toggle Animation

– Synchronize All action, which modifies behavior of some functions. When synchronization is

toggled, on_actionPlayAll_triggered() function adds all foreground GraphView instances into

m_synchronizedGraphViews and instead of calling GraphView::AnimationStart(), it calls

GraphView::AnimationStep on all of them. After creation in on_actionOpen_triggered(), every

GraphView had its Stepped() signal connected to GraphRec::SynchronizeAll() slot. Thus, when

any GraphView finishes animation of the time step, SynchronizeAll() is called. It evaluates

whether all members of m_synchronizedGraphViews have already finished their step and if so, it

calls GraphView::AnimationStep on all of them to continue the animation. Note that in the case of

different durations among animations, synchronization always waits for the slowest GraphView

leaving others stopped for a while. In order to assure consistent behavior with other features,

m_synchronizedGraphViews must be managed by other menu actions related to animation (mainly

removing of some GraphView instances from the list).

3.6.2 Open Dialog
Reference: opendialog.h, opendialog.cpp, opendialog.ui, parser.h

OpenDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui pointer.

GUI is represented by two QTreeWidget instances (m_ui->listFound, m_ui->listChosen) and

QSplitter

QTabWidget QSplitter

QTabWidget

QTabWidget

GraphRec Programmer’s Documentation 29

some buttons. Both tables have its header derived from headerTemplate, a list of HeaderItem

values from Parser interface, specified in the OpenDialog constructor. Note that table columns

containing important but not interesting information for the user are hidden by HideColumn()

function.

Handler of Add files button (on_buttonAddFiles_clicked()) invokes QFileDialog filling its file

format combo box with names of Parser servants obtained from Factory. After the user chooses

appropriate format and files to open, corresponding Parser is built and its ParseFile() function is

called for every selected file. Function call returns QTreeWidgetItem acting as a root for multiple

other QTreeWidgetItem instances each of which represents one table row showing statistics for one

graph. Since headerTemplate is also passed to the ParseFile(), it is ensured that row item order

will always correspond to the header item order. Before appending the root item to m_ui-

>listFound, it is passed to FillMissingInfo(), which completes its children with some default

values (layouter and validator name) that might not be found in the input file. When all items are

added into the m_ui->listFound table, user can select arbitrary number of them and move them

to the m_ui->listChosen table or vice versa. Handlers of mouse double clicks and handlers of

corresponding buttons (>>>, <<<) utilize Move() function. Since user can select arbitrary

combination of multiple root items (willing to open all graphs in the file) or only some of their

children, Move() must very carefully create, destroy and copy items in both tables. After the user is

done and hits Open button, on_buttonOpen_clicked() builds SolutionInfo structure for every

item in the m_ui->listFound and appends it to the acceptedSolutions list. SolutionInfo is

intended as a hint for GraphView constructor – where to find a graph (file name, file position), how

to parse it (parser name), how to interpret it (validator name) and how to lay it out (layouter

name). Note that file name is not located in every table item, but only in tool tips of root items

(refer to Parser interface). Publicly accessible acceptedSolutions list acts as output storage of

OpenDialog.

There is one tiny feature with quite complicated implementation, which should be described. Since
input file might not specify validators for its graphs, attempt to open larger file with some default

validator might appear to be very slow because of intensive error logging. In that case, user would

be also forced to change the validator manually in every opened GraphView. Assuming the user

knows what validator should be used for a given file; there is a possibility to change it directly in

OpenDialog before actual opening. User selects multiple (root or normal) items in the table and by

right mouse button click invokes customContextMenuRequested(), which is a signal of

QTreeWidget connected to ShowContextMenu() slot of OpenDialog. ShowContextMenu() opens

m_contextMenu (QMenu instance), whose actions correspond to validator names obtained from

Factory, and sets m_senderTreeWidget to remember what QTreeWidget the context menu was

requested from. Every menu action is connected through m_signalMapperValidators

(QSignalMapper instance) to SetValidator() slot. SetValidator() discovers all selected items

in m_senderTreeWidget table and alters their validator column with given validator name.

3.6.3 Help Dialog
Reference: helpdialog.h, helpdialog.cpp, helpdialog.ui

HelpDialog is a class, which inherits QDialog and has its GUI part accessible through m_ui pointer.

Class acts as a simple help viewer of the file index.html in the folder /../doc/ (relatively to the

executable). Since it is expected that help file is coded in HTML, class uses QTextBrowser (m_ui-

>textBrowser) for the rendering. HelpDialog currently does not support text searching and

indexing. Thus, help file should contain table of contents and should be well structured by usage of

hypertext links. Note that HelpDialog is non-modal and has no parent (when created by

GraphRec) in order to be accessible even if other modal dialog is shown.

3.7 Persistent Settings

GraphRec uses Qt multiplatform approach to save settings persistently between user sessions.

QSettings class provides abstraction for uniform access to settings, which are saved in various

locations – registry on Windows (HKEY_CURRENT_USER\Software\ or

HKEY_LOCAL_MACHINE\Software\ or HKEY_LOCAL_MACHINE\Software\WOW6432node) or conf files on

Unix ($HOME/.config/ or /etc/xdg/). Because application name (GraphRec) and domain

GraphRec Programmer’s Documentation 30

(koupy.net) is set explicitly in the GraphRec class constructor, it is possible to work with settings

anywhere in the code without specifying it again. It is sufficient to make QSettings instance on the

stack and then call its value() function for fetching entries or setValue() function for saving

entries. GraphRec settings can be reviewed either in constructors of GUI classes or in functions

that prepares/deletes modal dialogs.

4 File Formats

4.1 Multirobot

Reference: multirobotparser.cpp, multirobotsaver.cpp

Multirobot file format is the initial format supported by GraphRec. It is derived from the output of

multirobot, the software for solving multirobot path planning and pebble motion on graph,
developed by RNDr. Pavel Surynek, Ph.D. (http://ktiml.mff.cuni.cz/~surynek/). Advantage of
having common format is that there is no need for any converter. There was also no time wasted
on developing such converter. However, chosen approach has also some disadvantages – mainly

the fact that some data fields are not relevant for GraphRec (which results in unnecessarily large
files).

Format specification consists of grammar (in Extended Backus–Naur Form with case insensitive
terminals) and its semantic description. Note that there are fields defined by grammar but
irrelevant for GraphRec. When it happens that whole line is irrelevant, it is not even specified by

the grammar and considered as an auxiliary non-terminal. Since auxiliary non-terminal has no
exact specification, grammar should be used only as a reference due to its incompleteness. It can
be assumed that line standing behind auxiliary non-terminal cannot interfere with the rest of the
grammar. GraphRec puts also some optional extensions to the original format. These extensions

include information about node positions, graph coloring, viewport state and validation mode.
GraphRec can open either original or extended file but can save only extended file.

4.1.1 Grammar
file = { graph } , '<EOF>' ;

graph = { aux } , [id] ,

 { aux } , vertex block ,

 { aux } , edge block ,

 { aux } , [circle block] ,

 { aux } , [validator block] ,

 { aux } , [color block] ,

 { aux } , [position block] ,

 { aux } , solution block ,

 { aux } , length ,

 { aux } ;

id = 'id:' , uint , nl ;

vertex block = 'V =' , nl , { vertex }, nl ;

vertex = '(' , uint , ':' , uint , ')' ,

 '[' , sint , ':' , sint , ':' , sint '] ' ,

 { uintwh } , nl ;

edge block = 'E =' , nl , { edge }, nl ;

edge= '{' , uint , ',' , uint , '} (' , uint , ')' , nl ;

circle block = 'C =' , nl , { circle }, nl ;

circle = uintwh , '(' , uint , ',' , uint , '): ' , { uintwh } ,

 ' [' , { uintwh } , '] ' , '{' , { uintwh } , '}' , nl ;

validator block = 'MOD =' , nl , ('M:IMMEDIATE' | 'M:TRANSITIVE') , nl ;

color block = 'COL =' , nl , [scene] , [borders] ,

 [highlight] , { color } , nl ;

scene = 'B_SCN:A:' , color value , nl ;

borders = 'P_BRD:A:' , color value , nl ;

highlight = 'P_HLT:A:' , color value , nl ;

color = ('B' | 'P') , '_' , ('EMP' | 'INH' | 'FIN') ,

 ':' , uint , ':' , color value , nl ;

position block = 'POS =' , nl , [matrix] , [angle] ,

 [center] , { position } , nl ;

matrix = ' MATRIX:' , float , ':' , float , ':' , float , ':' ,

http://ktiml.mff.cuni.cz/~surynek/

GraphRec Programmer’s Documentation 31

 float , ':' , float , ':' , float , nl ;

angle = 'ANGLE:' , float , nl ;

center = 'CENTER:X' , float , ':Y' , float , nl ;

position = uint , ':X' , float , ':Y' , float , nl ;

solution block = 'Solution' , nl , { move } , nl ;

move = uintwh , '---> ' , uintwh , [move extension] ,

 '(' , uint , ')' , nl ;

move extension = '[' , sint , ' ---> ' , sint , '] ' ;

length = 'Length:' , uint , nl ;

aux = ? unknown additional information ? , nl ;

nl = new line , { new line } ;

new line = '<LF>' | '<CR>' | '<LF>' , '<CR>' | '<CR>' , '<LF>' ;

numeral = '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' ;

uint = numeral , { numeral } ;

uintwh = uint , ' ' ;

sint = ['+'] , uint | '-' , uint ;

float = sint , '.' , uint | sint ;

hnumeral = numeral | 'a' | 'b' | 'c' | 'd' | 'e' | 'f' ;

color value = '#' , hnumeral , hnumeral , hnumeral , hnumeral ,

 hnumeral , hnumeral ;

4.1.2 Description

 (<node_id>:<IGNORED>)[<initial_entity_id>:<IGNORED>:<IGNORED>] stands for vertex

definition. Note that entity identifications less or equal zero are reserved for empty nodes.

 {<source_node_id>,<destination_node_id>} (<IGNORED>) stands for edge definition.

 <circle_id> (<source_node_id>,<destination_node_id>): <whole_circle>

[<new_arc>] {<existing_arc>} stands for circle definition. Last three tokens are lists of

node identifications. Circle is created by joining new arc to the source and destination
node, both of which are joints of existing arc.

 M:IMMEDIATE selects validator for Pebble motion on graph.

 M:TRANSITIVE selects validator for Multirobot path planning.

 B_SCN:A:<color> is background color for graph view scene. Letter A stands for all, but has

no practical meaning in this context.

 P_BRD:A:<color> is color for edges and node borders. Letter A stands for all, but has no

practical meaning in this context.

 P_HLT:A: is color for edge highlighting. Letter A stands for all, but has no practical

meaning in this context.

 B_EMP:<node_id>:<color> is background color for empty node.

 P_EMP:<node_id>:<color> is foreground color for empty node.

 B_INH:<entity_id>:<color> is background color for entity in non-final position. INH

stands for inhabited.

 P_INH:<entity_id>:<color> is foreground color for entity in non-final position. INH

stands for inhabited.

 B_FIN:<entity_id>:<color> is background color for entity in final position. FIN stands for

final.

 P_FIN:<entity_id>:<color> is foreground color for entity in final position. FIN stands for

final.

 MATRIX:<m11>:<m12>:<m21>:<m22>:<dx>:<dy> is transformation matrix of the scene.

 ANGLE:<angle> is rotation of the scene (in degrees). Currently obsolete, because scene is

no longer rotated – rotation is saved in node positions instead.

 CENTER:X<x>:Y<y> is point in the scene that is aligned to the center of viewport.

 <node_id>:X<x>:Y<y> is position of specified node.

 <source_node_id> ---> <destination_node_id> [<IGNORED> ---> <IGNORED>]

(<time_step>) defines one particular move of unspecified entity between two specified

nodes at specified time step. Direction of arrow does not necessarily match direction of

move – if suggested direction is evaluated as invalid by validator, there is a chance that the

inverse direction would be evaluated as valid. Note that these lines might not be sorted by

time step in the input file.

4.1.3 Example
id:1

V =

GraphRec Programmer’s Documentation 32

(1:0)[1:0:0]

(2:0)[2:0:0]

(3:0)[3:0:0]

E =

{1,2} (0)

{2,3} (0)

{3,1} (0)

MOD =

M:TRANSITIVE

COL =

B_SCN:A:#ffffff

P_BRD:A:#000000

P_HLT:A:#00ffff

B_EMP:1:#ffaa00

B_EMP:2:#ffaa00

B_EMP:3:#ffaa00

P_EMP:1:#000000

P_EMP:2:#000000

P_EMP:3:#000000

B_INH:1:#0000ff

B_INH:2:#ff0000

B_INH:3:#00ff00

P_INH:1:#ffffff

P_INH:2:#ffffff

P_INH:3:#ffffff

B_FIN:1:#00007f

B_FIN:2:#aa0000

B_FIN:3:#005500

P_FIN:1:#ffffff

P_FIN:2:#ffffff

P_FIN:3:#ffffff

POS =

MATRIX:1.68179:0:0:1.68179:0:0

ANGLE:0

CENTER:X-7.13524:Y-35.6762

1:X-18.7568:Y-8.08399

2:X4.0907:Y-71.4452

3:X-62.2215:Y-59.842

Solution

2 ---> 3 [0 ---> 0] (0)

3 ---> 1 [0 ---> 0] (0)

1 ---> 2 [0 ---> 0] (0)

3 ---> 1 [0 ---> 0] (1)

2 ---> 3 [0 ---> 0] (1)

1 ---> 2 [0 ---> 0] (1)

3 ---> 1 [0 ---> 0] (2)

2 ---> 3 [0 ---> 0] (2)

1 ---> 2 [0 ---> 0] (2)

Length:9

4.2 GraphRec

Reference: graphrecparser.cpp, graphrecsaver.cpp

GraphRec file format is refined alternative to the Multirobot file format, which is burdened by

compatibility redundancies. Format is specified in XML and is designed against requirement to
provide better locality and encapsulation of information than Multirobot format.

4.2.1 Description
While reading this section, it is recommended to refer to the example below. Note that optional
tags or attributes are enclosed in square brackets. File is composed from XML header, document

type <!DOCTYPE graphrec> and single root element <graphrec

version="<version_number>"></graphrec>. Root element acts as a container for one or more

<solution [id="<solution_id>"]></solution> definitions, which are further composed from

following elements:

GraphRec Programmer’s Documentation 33

 [<scene [bg="<background_color>"]></scene>] contains scene definition:

o [<viewport x="<x_position>" y="<y_position>"/>] specifies point in the scene

that is aligned to the center of viewport.
o [<matrix m11="<m11>" m12="<m12>" m21="<m21>" m22="<m22>" dx="<dx>"

dy="<dy>"/>] defines transformation matrix of the scene.

 <graph></graph> contains graph definition:
o <entity id="<entity_id>" [bg="<background_color>"]

[bgf="<final_background_color>"] [fg="<foreground_color>"]

[fgf="<final_foreground_color>"]/> stands for entity definition. Note that

entity identification must be greater than zero.
o <node id="<node_id>" [ent="<initial_entity_id>"] [x="<x_position>"

y="<y_position>"] [bg="<background_color>"] [fg="<foreground_color>"]

[bnd="<boundary_color>"]/> stands for vertex definition. Note that entity

identification must be greater than zero.
o <edge n1="<first_node_id>" n2="<second_node_id>" [ln="<line_color>"]

[hgl="<highlight_color>"]/> stands for edge definition.

 <scenario [validator="<validator_name>"]></scenario> contains all movements off

the solution:
o <move tms="<time_step>" src="<source_node_id>"

dst="<destination_node_id>"/> defines one particular move of unspecified

entity between two specified nodes at specified time step. Direction implied by
node atrributes does not necessarily match direction of move – if suggested

direction is evaluated as invalid by validator, there is a chance that the inverse
direction would be evaluated as valid. Note that move definitions might not be
sorted by time step in the input file.

4.2.2 Example
<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE graphrec>

<graphrec version="1.0">

 <solution id="1">

 <scene bg="#ffffff">

 <viewport x="-1.18921" y="-29.7302"/>

 <matrix m11="1.68179" m12="0" m21="0"

m22="1.68179" dx="0" dy="0"/>

 </scene>

 <graph>

 <entity id="1" bg="#0000ff" bgf="#00007f"

fg="#ffffff" fgf="#ffffff"/>

 <entity id="2" bg="#ff0000" bgf="#aa0000"

fg="#ffffff" fgf="#ffffff"/>

 <entity id="3" bg="#00ff00" bgf="#005500"

fg="#ffffff" fgf="#ffffff"/>

 <node id="1" ent="1" x="-18.7568" y="-8.08399"

bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <node id="2" ent="2" x="4.0907" y="-71.4452"

bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <node id="3" ent="3" x="-62.2215" y="-59.842"

 bg="#ffaa00" fg="#000000" bnd="#000000"/>

 <edge n1="1" n2="2" ln="#000000" hgl="#00ffff"/>

 <edge n1="2" n2="3" ln="#000000" hgl="#00ffff"/>

 <edge n1="3" n2="1" ln="#000000" hgl="#00ffff"/>

 </graph>

 <scenario validator="Multirobot">

 <move tms="0" src="3" dst="1"/>

 <move tms="0" src="1" dst="2"/>

 <move tms="0" src="2" dst="3"/>

 <move tms="1" src="1" dst="2"/>

 <move tms="1" src="2" dst="3"/>

 <move tms="1" src="3" dst="1"/>

 <move tms="2" src="1" dst="2"/>

 <move tms="2" src="2" dst="3"/>

 <move tms="2" src="3" dst="1"/>

 </scenario>

 </solution>

GraphRec Programmer’s Documentation 34

</graphrec>

	Compilation
	Preparing Environment
	Building Qt
	Building FFmpeg
	Building GraphRec
	Compressing Executable
	Redistributable Package
	Licensing

	Algorithms
	Multirobot Validation
	Fruchterman-Reingold Layouting
	Kamada-Kawai Layouting
	Producer-consumer Synchronization

	Architecture
	Global Overview
	Graph Primitives
	Entity Class
	Node Class
	Edge Class

	Passing Common Data
	Producing Servants
	Parser Interface
	Saver Interface
	Validator Interface
	Layouter Interface
	Recorder Interface
	ImageRecorder Interface
	VideoRecorder Interface

	GraphView Class
	Error Dialog
	Color Dialog
	Layouting
	Scene Actions
	Animation
	Setup Dialog
	Capture Dialog
	Rendering
	Video Encoding

	Main Window
	Splitting
	Open Dialog
	Help Dialog

	Persistent Settings

	File Formats
	Multirobot
	Grammar
	Description
	Example

	GraphRec
	Description
	Example

